首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

几何 >> 解析几何
Questions in category: 解析几何 (Cartesian geometry).

心脏线(cardioid)关于初始点为圆心的圆的反演方程

Posted by haifeng on 2014-06-10 10:42:03 last update 2015-08-23 23:07:57 | Answers (1)


平面 $\mathbb{R}^2$ 上两个半径为 $r$ 的圆 $C_1$ 和 $C_2$ 外切于 $P$ 点. 将圆 $C_2$ 沿 $C_1$ 的圆周(无滑动)滚动一周, 这时, $C_2$ 上的 $P$ 点也随 $C_2$ 的运动而运动. 记 $\Gamma$ 为 $P$ 点的运动轨迹曲线, 称为心脏线(cardioid).

现设 $C$ 为以 $P$ 的初始位置(切点)为圆心的圆, 其半径为 $R$. 记

\[
\gamma:\ \mathbb{R}^2\cup\{\infty\}\rightarrow\mathbb{R}^2\cup\{\infty\}
\]

为圆 $C$ 的反演变换, 它将 $Q\in\mathbb{R}^2\setminus\{P\}$ 映为射线 $PQ$ 上的点 $Q'$, 满足 $|PQ|\cdot|PQ'|=R^2$.

求证: $\gamma(\Gamma)$ 为抛物线.


Hint: 心脏线(cardioid)的方程是 $\rho=a(1-\cos\theta)$

这里, 心脏线的方程为 $\rho=2r(1-\cos\theta)$, 而反演是不改变角度的, 因此反演后的曲线, 方程是

\[
\rho_2=\frac{R^2}{\rho}=\frac{R^2}{2r(1-\cos\theta)}.
\]

 

回忆圆锥曲线的极坐标方程是

\[
\rho=\frac{ep}{1-e\cos\theta},
\]

其中 $e$ 是离心率(当 $e\in(0,1)$ 时, 曲线是椭圆; 当 $e=1$ 时曲线是抛物线; 当 $e>1$ 时曲线是双曲线.)

$p$ 是焦准距, 即焦点到准线的距离. (注意, 这里椭圆的左焦点设定为极点, 双曲线的右焦点设定为极点.)

 


 

注: 此为第五届中国大学生数学竞赛预赛试题(数学类, 2013年10月).