首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

分析 >> 实分析
Questions in category: 实分析 (Real Analysis).

Lebesgue 可积函数的性质

Posted by haifeng on 2021-07-02 11:16:16 last update 2021-07-02 17:20:49 | Answers (1)


设 $f\in L^{1}(\mu)$, ($L^{1}(\mu)$ 中的元素被称为 Lebesgue 可积函数或 Lebesgue 可求和函数).

若 $f=u+iv$, 这里 $u$ 和 $v$ 是 $X$ 上的实可测函数. 对每个可测集 $E$, 定义

\[
\int_E f\mathrm{d}\mu=\Bigl(\int_E u^{+}\mathrm{d}\mu-\int_E u^{-}\mathrm{d}\mu\Bigr)+i\Bigl(\int_E v^{+}\mathrm{d}\mu-\int_E v^{-}\mathrm{d}\mu\Bigr).
\]


设 $f\in L^{1}(\mu)$, 则 $f$ 具有黎曼积分的一些类似性质.

\[
\Biggl|\int_X f\mathrm{d}\mu\Biggr|\leqslant\int_X |f|\mathrm{d}\mu.
\]

等号成立当且仅当存在常数 $\alpha$, 使得 $\alpha f=|f|$ a.e. 于 $X$ 上.

 

 

参考自 [1] P. 30.


References:

[1] W. Rudin, 《实分析和复分析》