首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

概率统计 >> 概率论
Questions in category: 概率论 (Probability).

[Exer5-3] (A Shortcut Formula for $\sigma^2$) Proposition of Book {Devore2017B} P.116

Posted by haifeng on 2020-03-23 19:54:26 last update 2020-03-23 19:58:37 | Answers (1)


The expected value of $X$ measures where the probability distribution is centered. We will use the variance of $X$ to measure the amount of variability in (the distribution of) $X$.

Let $X$ have pmf $p(x)$ and expected value $\mu$. Then the variance of $X$ ($X$ 的方差), denoted by $V(X)$ or $\sigma_X^2$, or just $\sigma^2$, is defined by
\[
V(X):=\sum_{D}(x-\mu)^2\cdot p(x)=E\bigl[(X-\mu)^2\bigr]
\]
Prove that
\[
V(X)=E(X^2)-(E(X))^2.
\]

i.e.,

\[V(X)=\sigma^2=\biggl[\sum_{D}x^2\cdot p(x)\biggr]-\mu^2\]