首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

分析 >> 数学分析
Questions in category: 数学分析 (Mathematical Analysis).

证明 Wallis 公式

Posted by haifeng on 2012-06-04 21:15:19 last update 2015-08-24 13:01:20 | Answers (2)


\[\frac{\pi}{2}=\lim_{n\rightarrow+\infty}\biggl[\frac{(2n)!!}{(2n-1)!!}\biggr]^2\frac{1}{2n+1}\]

它可以改写为

\[\frac{\pi}{2}=\prod_{n=1}^{+\infty}(\frac{2n}{2n-1}\cdot\frac{2n}{2n+1})\]

或者

\[\frac{\pi}{4}=\prod_{n=1}^{+\infty}\frac{2n(2n+2)}{(2n+1)^2}\]


\[\lim_{n\rightarrow+\infty}\biggl[\frac{(2n)!!}{(2n-1)!!}\biggr]^2\frac{1}{2n+1}=\frac{\pi}{2}=\lim_{n\rightarrow+\infty}\biggl[\frac{(2n)!!}{(2n-1)!!}\biggr]^2\frac{1}{2n}\]


公式的获得来源于计算积分(问题43)

\[
I_m=\int_{0}^{\frac{\pi}{2}}\sin^m xdx,\quad J_m=\int_{0}^{\frac{\pi}{2}}\cos^m xdx,\quad (m\in\mathbb{Z}^+)
\]

这两个积分的计算要使用递推公式.


References

梅加强, 数学分析, 高等教育出版社.


Remark

有时, Wallis 不等式(问题711)可能更有用.


Ex. 由 Wallis 公式, 证明

\[
\frac{(2n)!}{(n!)^2}\sim\sqrt{\frac{2}{\pi}}\cdot\frac{4^n}{\sqrt{2n+1}}.
\]