首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

几何 >> 辛几何
Questions in category: 辛几何 (Symplectic Geometry).

[Def]辛流形 $(M,\omega)$ 上的近复结构称为 $\omega$-calibrated 的.

Posted by haifeng on 2012-08-06 10:48:35 last update 2017-02-28 18:35:48 | Answers (0)


辛流形 $(M,\omega)$ 上的近复结构 $J$ 称为 $\omega$-calibrated 的($\omega$-校准的, $J$ est "calibré" par $\omega$ ), 如果 $\omega$ 是 $J$ 不变的($J$-invariant), 并且对称双线性形式 $\omega(J\cdot,\cdot)$ 是正定的($J$-positive), 即

\[\omega(JX,JY)=\omega(X,Y),\quad\omega(JV,V) > 0,\]

对任意的 $X,Y,V\in TM$, $V\neq 0$ 都成立.


也可以表述为

\[
\omega[x](v,w)=\omega[x](J_x v, J_x w),\quad\omega[x](u,J_x u) > 0,
\]

对任意 $x\in M$, $v,w,u\in T_x M$, $u\neq 0$ 都成立.


Remark:

此时,我们也称 $\omega$ 是 $J$-相容的($J$-compatible), 或者近复结构 $J$ 关于辛形式 $\omega$ 是相适应的(La structure presque-complex $J$ est dite adaptée à la forme symplectique $\omega$. )

 

$M$ 上与 $\omega$ 相适应的近复结构 $J$ 的存在性是一个经典的结论(参见[2], Lecture 2)

 

References:

[1] P. Delanoë, Sur L'analogue presque-complexe de l'equation de Calabi-Yau. Osaka J. Math. 33 (1996), 829-846.

[2] A. Weinstein, Lectures on symplectic manifolds, American Math. Society 1977 (CBMS regional conference series in math. #29).