首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

几何 >> 复几何
Questions in category: 复几何 (Complex Geometry).

[Def]可约全纯函数

Posted by haifeng on 2017-03-30 19:47:29 last update 2017-03-30 19:50:01 | Answers (0)


设 $f\in{}_n\mathcal{O}_0$, 称 $f$ 是可约的(reducible), 如果 $f$ 可以写成 $f=g_1 g_2$, 其中 $g_1$ 和 $g_2$ 都是非单位元(non unit of ${}_n\mathcal{O}_0$), 即 $g_1(0)=g_2(0)=0$.

 

特别的, 如果 $f\in{}_{n-1}\mathcal{O}_0[z_n]$, 称 $f$ 是可约的(reducible), 如果 $f$ 可以写成 $f=g_1 g_2$, 其中 $g_1$ 和 $g_2$ 都是非单位元(non unit of ${}_n\mathcal{O}_0[z_n]$), 即 $g_1(0)=g_2(0)=0$.