Answer

问题及解答

B-函数(B function, B 函数)

Posted by haifeng on 2012-06-12 09:19:40 last update 2020-05-17 10:31:48 | Edit | Answers (3)

称以 $x,y$ 为参量的广义积分

\[\int_{0}^{1}t^{x-1}(1-t)^{y-1}dt\]

为第一类欧拉积分. 当 $x > 0, y > 0$ 时, 这个积分收敛(请证明). 此时称这个二元函数

\[B(x,y)=\int_{0}^{1}t^{x-1}(1-t)^{y-1}dt\tag{1}\]

为关于 $x,y$ 的 B-函数. 易见 $B(y,x)=B(x,y)$ (利用换元 $t\mapsto 1-s$ 即可证明).

由于 $t\in[0,1]$, 因此自然会想到令 $t=\sin^2\theta$, $\theta\in[0,\frac{\pi}{2}]$, 若此, 则得到 B-函数的另一种形式.

\[B(x,y)=2\int_{0}^{\frac{\pi}{2}}\sin^{2x-1}\theta\cos^{2y-1}\theta d\theta\]


 

Prop. $B(a,a)=2^{1-2a}B(a,\frac{1}{2})$.

 

Prop. $B(\frac{1}{2},\frac{1}{2})=\pi$.

 

Cor. $\Gamma(a)\Gamma(a+\frac{1}{2})=2^{1-2a}\Gamma(2a)\Gamma(\frac{1}{2})$.

 


B-函数与 $\Gamma$-函数之间的关系见 $\Gamma$-函数.


References

杨奇林 编著 《数学物理方程与特殊函数》(第2版) 附录A.

 


编辑历史

last update 2017-06-02 19:52:14

 

1

Posted by haifeng on 2017-06-02 18:22:47

\[
\begin{split}
B(a,a)&=\int_0^1 x^{a-1}(1-x)^{a-1}dx\\
&=\int_0^1 \Bigl(x(1-x)\Bigr)^{a-1}dx\\
&=\int_0^1 \Bigl(\frac{1}{4}-(x-\frac{1}{2})^2\Bigr)^{a-1}dx\\
&=\int_0^{\frac{1}{2}}\Bigl(\frac{1}{4}-(x-\frac{1}{2})^2\Bigr)^{a-1}dx+\int_{\frac{1}{2}}^1 \Bigl(\frac{1}{4}-(x-\frac{1}{2})^2\Bigr)^{a-1}dx\\
\end{split}
\]

第二个积分中, 令 $y=1-x$, 则

\[
\begin{split}
B(a,a)&=\int_0^{\frac{1}{2}}\Bigl(\frac{1}{4}-(x-\frac{1}{2})^2\Bigr)^{a-1}dx+\int_{\frac{1}{2}}^{0}\Bigl(\frac{1}{4}-(\frac{1}{2}-y)^2\Bigr)^{a-1}(-1)dy\\
&=\int_0^{\frac{1}{2}}\Bigl(\frac{1}{4}-(x-\frac{1}{2})^2\Bigr)^{a-1}dx+\int_0^{\frac{1}{2}}\Bigl(\frac{1}{4}-(y-\frac{1}{2})^2\Bigr)^{a-1}dy\\
&=2\int_0^{\frac{1}{2}}\Bigl(\frac{1}{4}-(x-\frac{1}{2})^2\Bigr)^{a-1}dx.
\end{split}
\]

令 $t=4(x-\frac{1}{2})^2$, 则 $\frac{1}{2}-x=\dfrac{\sqrt{t}}{2}$. $dx=-\dfrac{1}{4\sqrt{t}}dt$.

\[
\begin{split}
B(a,a)&=2\int_1^0 (\frac{1}{4}-\frac{t}{4})^{a-1}\cdot\frac{-1}{4\sqrt{t}}dt\\
&=2\int_0^1 \frac{(1-t)^{a-1}}{4^{a-1}}\cdot\frac{1}{4\sqrt{t}}dt\\
&=2^{1-2a}\int_0^1 (1-t)^{a-1}t^{\frac{1}{2}-1}dt\\
&=2^{1-2a}B(\frac{1}{2},a)\\
&=2^{1-2a}B(a,\frac{1}{2})\\
\end{split}
\]

 

2

Posted by haifeng on 2017-06-02 19:49:23

\[
\begin{split}
B(\frac{1}{2},\frac{1}{2})&=\int_0^1 x^{\frac{1}{2}-1}(1-x)^{\frac{1}{2}-1}dx\\
&=\int_0^1(x(1-x))^{-\frac{1}{2}}dx\\
&=\int_0^1\frac{1}{\sqrt{-x^2+x}}dx\\
&=\int_0^1 \frac{1}{\sqrt{\frac{1}{4}-(x-\frac{1}{2})^2}}dx\\
&=\int_0^1 \frac{1}{\frac{1}{2}\sqrt{1-(2(x-\frac{1}{2})^2}}dx\\
&=\int_0^1\frac{1}{\sqrt{1-(2(x-\frac{1}{2})^2}}d(2(x-\frac{1}{2}))\\
&=\arcsin(2(x-\frac{1}{2}))\biggr|_0^1\\
&=\arcsin(1)-\arcsin(-1)\\
&=2\arcsin 1\\
&=\pi.
\end{split}
\]

3

Posted by haifeng on 2017-06-02 19:59:52

对于 $B(a,a)=2^{1-2a}B(a,\frac{1}{2})$, 利用公式 $B(a,b)=\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$, 得

\[
\frac{\Gamma(a)\Gamma(a)}{\Gamma(2a)}=2^{1-2a}\frac{\Gamma(a)\Gamma(\frac{1}{2})}{\Gamma(a+\frac{1}{2})}
\]

推出

\[
\Gamma(a)\Gamma(a+\frac{1}{2})=2^{1-2a}\Gamma(2a)\Gamma(\frac{1}{2}).
\]

 


Remark:

B-函数与 Γ-函数之间的关系见 Γ-函数.