首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

几何 >> 微分几何 >> 曲线曲面论
Questions in category: 曲线曲面论 (Curve and surface theory).

若曲线 $c(s)$ 是以弧长为参数, 则 $\kappa(s)=|\ddot{c}(s)|$, $\tau(s)=\frac{\det(\dot{c}(s),\ddot{c}(s),\dddot{c}(s))}{\kappa^2(s)}$.

Posted by haifeng on 2012-06-19 21:24:15 last update 2012-07-26 09:22:33 | Answers (5)


若曲线 $c(s)$ 是正则曲线, 且以弧长为参数, 证明

\[\kappa(s)=|\ddot{c}(s)|,\quad\tau(s)=\frac{\det(\dot{c}(s),\ddot{c}(s),\dddot{c}(s))}{\kappa^2(s)}.\]

Frenet 标架为

\[\vec{v}(s)=e_1(s)=\dot{c}(s),\quad\vec{n}(s)=e_2(s)=\frac{\ddot{c}(s)}{|\ddot{c}(s)|},\quad\vec{b}(s)=e_3(s)=\frac{\dot{c}(s)\times\ddot{c}(s)}{|\ddot{c}(s)|}.\]


若曲线 $c(t)$ 以一般参数表示, 证明

\[\kappa(t)=\frac{|\dot{c}(t)\times\ddot{c}(t)|}{|\dot{c}(t)|^3},\quad\tau(t)=\frac{\det(\dot{c}(t),\ddot{c}(t),\dddot{c}(t))}{|\dot{c}(t)\times\ddot{c}(t)|^2}.\]

Frenet 标架为

\[
\begin{aligned}
\vec{v}(t)&=e_1(t)=\frac{\dot{c}(t)}{|\dot{c}(t)|},\\
\vec{n}(t)&=e_2(t)=\frac{(\dot{c}(t)\times\ddot{c}(t))\times\dot{c}(t)}{|(\dot{c}(t)\times\ddot{c}(t))\times\dot{c}(t)|},\\
\vec{b}(t)&=e_3(t)=\frac{\dot{c}(t)\times\ddot{c}(t)}{|\dot{c}(t)\times\ddot{c}(t)|}.
\end{aligned}
\]


并证明不论用什么参数表示曲线, 曲线的曲率和挠率是不依赖于参数的. 即有

\[\kappa(s)=\kappa(t),\qquad\tau(s)=\tau(t).\]

不但如此, Frenet 标架也是一致的. 即有

\[e_i(s)=e_i(t),\qquad i=1,2,3.\]