首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

数论 >> 一般数论 >> 初等数论
Questions in category: 初等数论 (Elementary Number Theory).

Farey 序列

Posted by haifeng on 2011-08-10 14:55:36 last update 2015-04-30 15:26:54 | Answers (0)


$n$ 阶的 Farey 序列是指下述集合

\[ \biggl\{\frac{p}{q}\mid (p,q)=1,1\leqslant p,q\leqslant n\biggr\}\cup\biggr\{\frac{0}{1}\biggr\} \]

按大小排列成的一个序列. 如

\[ F_6=\biggl\{\frac{0}{1},\frac{1}{6},\frac{1}{5},\frac{1}{4},\frac{1}{3},\frac{2}{5},\frac{1}{2},\frac{3}{5},\frac{2}{3},\frac{3}{4},\frac{4}{5},\frac{5}{6},\frac{1}{1}\biggr\}\]

\[ F_7=\biggl\{\frac{0}{1},\frac{1}{7},\frac{1}{6},\frac{1}{5},\frac{1}{4},\frac{2}{7},\frac{1}{3},\frac{2}{5},\frac{3}{7},\frac{1}{2},\frac{4}{7},\frac{3}{5},\frac{2}{3},\frac{5}{7},\frac{3}{4},\frac{4}{5},\frac{5}{6},\frac{6}{7},\frac{1}{1}\biggr\} \]

\[ F_{8}=\biggl\{\frac{0}{8},\frac{1}{8},\frac{1}{7},\frac{1}{6},\frac{1}{5},\frac{1}{4},\frac{2}{7},\frac{1}{3},\frac{3}{8},\frac{2}{5},\frac{3}{7},\frac{1}{2},\frac{4}{7},\frac{3}{5},\frac{5}{8},\frac{2}{3},\frac{5}{7},\frac{3}{4},\frac{4}{5},\frac{5}{6},\frac{6}{7},\frac{7}{8},\frac{1}{1}\biggr\} \]

\[ F_{9}=\biggl\{\frac{0}{9},\frac{1}{9},\frac{1}{8},\frac{1}{7},\frac{1}{6},\frac{1}{5},\frac{2}{9},\frac{1}{4},\frac{2}{7},\frac{1}{3},\frac{3}{8},\frac{2}{5},\frac{3}{7},\frac{4}{9},\frac{1}{2},\frac{5}{9},\frac{4}{7},\frac{3}{5},\frac{5}{8},\frac{2}{3},\frac{5}{7},\frac{3}{4},\frac{7}{9},\frac{4}{5},\frac{5}{6},\frac{6}{7},\frac{7}{8},\frac{8}{9},\frac{1}{1}\biggr\} \]

\[ F_{10}=\biggl\{\frac{0}{10},\frac{1}{10},\frac{1}{9},\frac{1}{8},\frac{1}{7},\frac{1}{6},\frac{1}{5},\frac{2}{9},\frac{1}{4},\frac{2}{7},\frac{3}{10},\frac{1}{3},\frac{3}{8},\frac{2}{5},\frac{3}{7},\frac{4}{9},\frac{1}{2},\frac{5}{9},\frac{4}{7},\frac{3}{5},\frac{5}{8},\frac{2}{3},\frac{7}{10},\frac{5}{7},\frac{3}{4},\frac{7}{9},\frac{4}{5},\frac{5}{6},\frac{6}{7},\frac{7}{8},\frac{8}{9},\frac{9}{10},\frac{1}{1}\biggr\} \]

\[ F_{11}=\biggl\{\frac{0}{11},\frac{1}{11},\frac{1}{10},\frac{1}{9},\frac{1}{8},\frac{1}{7},\frac{1}{6},\frac{2}{11},\frac{1}{5},\frac{2}{9},\frac{1}{4},\frac{3}{11},\frac{2}{7},\frac{3}{10},\frac{1}{3},\frac{4}{11},\frac{3}{8},\frac{2}{5},\frac{3}{7},\frac{4}{9},\frac{5}{11},\frac{1}{2},\frac{6}{11},\frac{5}{9},\frac{4}{7},\frac{3}{5},\frac{5}{8},\frac{7}{11},\frac{2}{3},\frac{7}{10},\frac{5}{7},\frac{8}{11},\frac{3}{4},\frac{7}{9},\frac{4}{5},\frac{9}{11},\frac{5}{6},\frac{6}{7},\frac{7}{8},\frac{8}{9},\frac{9}{10},\frac{10}{11},\frac{1}{1}\biggr\} \]