首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

代数 >> 线性代数 >> 矩阵
Questions in category: 矩阵 (Matrix).

(1) 设 $A$ 为实对称矩阵, $\lambda=\min_{|v|=1, v\in\mathbb{R}^n}\langle Av,v\rangle$. 求证: $\lambda$ 是 $A$ 的最小特征值. (2) 设 $C=\{(x_1,x_2,\ldots,x_n)^T\mid x_i\geqslant 0, i=1,2,\ldots,n\}$. 求证: 对任意一个 $n$ 元列向量 $u$, 存在 $v,w\in C$, 满足 $\langle v,w\rangle=0$, $u=v-w$. (3) 设 $A=(a_{ij})_{n\times n}$ 是实对称矩阵, 满足对任意 $1\leqslant i,j\leqslant n$, $i\neq j$, 有 $a_{ij} < 0$, 且对任意的非零向量 $v\in C$, $-Av\not\in C$. 求证: $A$ 是正定矩阵.

Posted by haifeng on 2025-10-25 21:00:39 last update 2025-10-25 21:00:39 | Answers (1)


(1)  设 $A$ 为实对称矩阵, $\lambda=\min_{|v|=1, v\in\mathbb{R}^n}\langle Av,v\rangle$. 求证: $\lambda$ 是 $A$ 的最小特征值.

(2)  设 $C=\{(x_1,x_2,\ldots,x_n)^T\mid x_i\geqslant 0, i=1,2,\ldots,n\}$. 求证: 对任意一个 $n$ 元列向量 $u$, 存在 $v,w\in C$, 满足 $\langle v,w\rangle=0$, $u=v-w$.

(3)  设 $A=(a_{ij})_{n\times n}$ 是实对称矩阵, 满足对任意 $1\leqslant i,j\leqslant n$, $i\neq j$, 有 $a_{ij} < 0$, 且对任意的非零向量 $v\in C$, $-Av\not\in C$. 求证: $A$ 是正定矩阵.