首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

分析 >> 数学分析 >> 多元函数
Questions in category: 多元函数 (Multivariate functions).

设 $z=z(x,y)$ 可微, 且满足 $x^2\frac{\partial z}{\partial x}+y^2\frac{\partial z}{\partial y}=z^2$.

Posted by haifeng on 2023-04-25 13:25:09 last update 2023-04-25 13:38:33 | Answers (1)


设 $z=z(x,y)$ 可微, 且满足 $x^2\frac{\partial z}{\partial x}+y^2\frac{\partial z}{\partial y}=z^2$. 作变换

\[
\begin{cases}
u&=x,\\
v&=\frac{1}{y}-\frac{1}{x},
\end{cases}\quad\text{及}\quad w=\frac{1}{z}-\frac{1}{x},
\]

证明: $\frac{\partial w}{\partial u}=0$.

 


注: 题目来自于 https://www.bilibili.com/video/BV1kv4y1E7kK/