首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

分析 >> 数学分析 >> 微分中值定理
Questions in category: 微分中值定理 (Differential mean value theorem).

设 $f(x)\in C[0,2]$, $f$ 在 $(0,2)$ 内可导, $f(2)=0$. 证明: 存在 $\xi\in(0,2)$, 使得 $(1+\xi)f(\xi)+\xi f'(\xi)=0$.

Posted by haifeng on 2019-10-13 20:36:47 last update 2019-10-13 20:43:08 | Answers (0)


设 $f(x)\in C[0,2]$, $f$ 在 $(0,2)$ 内可导, $f(2)=0$. 证明: 存在 $\xi\in(0,2)$, 使得

\[(1+\xi)f(\xi)+\xi f'(\xi)=0.\]

 


[分析]

将 $\xi$ 换成 $x$,

\[
(1+x)f(x)+xf'(x)=xf(x)+\bigl(xf(x)\bigr)'
\]

故考虑函数

\[
g(x)=xf(x)+\int_0^x tf(t)dt,
\]

$g(x)$ 满足 $g'(x)=\bigl(xf(x)\bigr)'+xf(x)$, 且 $g(0)=0$. 但是 $g(2)$ 不一定为0.

因此, 进一步的考虑

\[
h(x)=xf(x)+\int_0^x tf(t)dt-A\cdot\frac{x}{2},
\]

其中 $A=\int_0^2 tf(t)dt$.

于是 $h(x)\in C[0,2]$, 且在 $(0,2)$ 内可导, $h(0)=h(2)=0$. 不过此时

\[
h'(x)=\bigl(xf(x)\bigr)'+xf(x)-\frac{A}{2}
\]