Answer

问题及解答

求定积分 $\int_0^1\bigl[x\int_1^{x^2}\frac{\sin t}{t}\mathrm{d}t\bigr]\mathrm{d}x$.

Posted by haifeng on 2020-01-10 15:01:41 last update 2020-01-10 15:17:39 | Edit | Answers (1)

求定积分

\[\int_0^1\bigl[x\int_1^{x^2}\frac{\sin t}{t}\mathrm{d}t\bigr]\mathrm{d}x.\]

 

注意: 不用累次积分.

1

Posted by haifeng on 2020-01-10 19:48:10

令 $f(x)=\int_1^{x^2}\frac{\sin t}{t}dt$, 则 

\[
f'(x)=\frac{\sin x^2}{x^2}\cdot 2x
\]

故 $df(x)=\frac{2}{x}\sin x^2 dx$. 于是原积分为

\[
\begin{split}
&\int_0^1 xf(x)dx\\
=&\frac{1}{2}\int_0^1 f(x)dx^2\\
=&\frac{1}{2}\Bigl[x^2 f(x)\biggr|_0^1-\int_0^1 x^2 df(x)\Bigr]\\
=&\frac{1}{2}\Bigl[f(1)-\int_0^1 x^2\cdot\frac{2}{x}\sin x^2 dx\Bigr]\\
=&\frac{1}{2}\Bigl[f(1)-\int_0^1 2x\sin x^2 dx\Bigr]\\
\end{split}
\]

这里 $f(1)=\int_1^1\frac{\sin t}{t}dt=0$.

\[
\int_0^1 2x\sin x^2 dx=\int_0^1 \sin x^2 dx^2=\int_0^1 \sin t dt=(-\cos t)\biggr|_0^1=1-\cos 1.
\]

因此, 原积分的值为

\[
\frac{1}{2}(\cos 1-1).
\]