首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

数论
Questions in category: 数论 (Number Theory).

从 $\mathbb{N}\setminus\{1\}$ 中删去 2 和 3 的倍数, 得到数列 $\{u_n\}_{n=1}^{\infty}$, 证明一些性质

Posted by haifeng on 2014-05-10 09:23:48 last update 2014-05-10 09:23:48 | Answers (0)


Claim 1. 从 $\mathbb{N}\setminus\{1\}$ 中删去 2 和 3 的倍数, 得到数列 $\{u_n\}_{n=1}^{\infty}$, 证明

\[
\begin{cases}
u_{2k+1}=u_{2k}+4\\
u_{2k}=u_{2k-1}+2\\
\end{cases}
\]

这里 $k=1,2,\ldots$.


Question.  从 $\mathbb{N}\setminus\{1\}$ 中删去 2, 3, 5 的倍数, 得到数列 $\{u_n\}_{n=1}^{\infty}$, 有什么性质?