首页

欢迎

 

Welcome

欢迎, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

数论 >> 解析数论
Questions in category: 解析数论 (Analytic Number Theory).

基本引理证明(Mordell)中的一个恒等式

Posted by haifeng on 2021-07-19 16:17:06 last update 2021-07-19 16:18:04 | Answers (1)


[1] P.15 当 $\ell=1$ 时基本引理的证明(Mordell)中, 有下面这个恒等式

 

\[
\begin{split}
&\sum_{a_k}\cdots\sum_{a_1}\biggl|\sum_{x=1}^{p}e_p(a_k x^k+\cdots+a_1 x)\biggr|^{2k}\\
=&\sum_{x_1}\cdots\sum_{x_k}\sum_{y_1}\cdots\sum_{y_k}\sum_{a_k}\cdots\sum_{a_1}e_p\bigl(a_k(x_1^k+\cdots+x_k^k-y_1^k-\cdots-y_k^k)+\cdots+a_1(x_1+\cdots+x_k-y_1-\cdots-y_k)\bigr)\\
=&p^k N,
\end{split}
\]

 

 


References:

[1] 华罗庚 著, 王元  审校  《华罗庚文集》(数论卷I)