Answer

问题及解答

二阶酉方阵的分解

Posted by haifeng on 2014-10-26 00:28:26 last update 2014-10-26 22:03:35 | Edit | Answers (1)

证明: 任意二阶酉方阵 $U$ 可分解为

\[
U=\begin{pmatrix}
e^{i\theta_1} & 0\\
0 & e^{i\theta_2}\\
\end{pmatrix}
\begin{pmatrix}
\cos t & \sin t\\
-\sin t & \cos t\\
\end{pmatrix}
\begin{pmatrix}
e^{i\theta_3} & 0\\
0 & e^{i\theta_4}\\
\end{pmatrix},
\]

其中 $\theta_1,\theta_2,\theta_3,\theta_4$ 和 $t$ 都是实数.


Remark:

利用此说明其中的单参数子群是怎样的, 有什么性质?


Reference:

李炯生、查建国 编著 《线性代数》,中国科技大学出版社,2005.  [P.538]

1

Posted by haifeng on 2014-10-26 13:33:14

\[
A=\begin{pmatrix}
z & w\\
u & v\\
\end{pmatrix}\in U(2),\quad z,w,u,v\in\mathbb{C},
\]

则 $AA^{*}=I_2$.

\[
\begin{pmatrix}
z & w\\
u & v\\
\end{pmatrix}
\begin{pmatrix}
\bar{z} & \bar{u}\\
\bar{w} & \bar{v}\\
\end{pmatrix}=
\begin{pmatrix}
 1& 0\\
 0& 1\\
\end{pmatrix}
\]

\[
\begin{pmatrix}
|z|^2+|w|^2 & z\bar{u}+w\bar{v}\\
u\bar{z}+v\bar{w} & |u|^2+|v|^2\\
\end{pmatrix}=
\begin{pmatrix}
 1& 0\\
 0& 1\\
\end{pmatrix}
\]

因此

\[
\begin{cases}
|z|^2+|w|^2=1=|u|^2+|v|^2,&\quad&(1)\\
z\bar{u}+w\bar{v}=0.&\quad&(2)
\end{cases}
\]

于是可设 $|z|=\cos t$, $|w|=\sin t$, $|u|=\cos s$, $|v|=\sin s$. 确切的, 可设

\[
\begin{pmatrix}
z & w\\
u & v\\
\end{pmatrix}=
\begin{pmatrix}
e^{i\alpha_1}\cos t & e^{i\alpha_2}\sin t\\
e^{i\alpha_3}\cos s & e^{i\alpha_4}\sin s\\
\end{pmatrix}.
\]

代入 (2), 得

\[
\cos t\cos s\cdot e^{i(\alpha_1-\alpha_3)}+\sin t\sin s\cdot e^{i(\alpha_2-\alpha_4)}=0,
\]

可推出

\[
\begin{cases}
\cos t\cos s\cos(\alpha_1-\alpha_3)+\sin t\sin s\cos(\alpha_2-\alpha_4)=0,\quad (3)\\
\cos t\cos s\sin(\alpha_1-\alpha_3)+\sin t\sin s\sin(\alpha_2-\alpha_4)=0.\quad (4)\\
\end{cases}
\]

(3) $\times\sin(\alpha_1-\alpha_3)-$ (4) $\times\cos(\alpha_1-\alpha_3)$, 得

\[
\sin t\sin s\bigl[\cos(\alpha_2-\alpha_4)\sin(\alpha_1-\alpha_3)-\sin(\alpha_2-\alpha_4)\cos(\alpha_1-\alpha_3)\big]=0.
\]

此即

\[
\sin t\sin s\cdot\sin\big((\alpha_1-\alpha_3)-(\alpha_2-\alpha_4)\big)=0.
\]

因此不妨设 $\alpha_1-\alpha_3=\alpha_2-\alpha_4$.

再由 (3), 得

\[
\big(\cos t\cos s+\sin t\sin s\big)\cos(\alpha_1-\alpha_3)=0.
\]

因此, $\cos(s-t)=\cos t\cos s+\sin t\sin s=0$, 故不妨设 $s-t=\frac{\pi}{2}$.


因此,

\[
A=\begin{pmatrix}
z & w\\
u & v\\
\end{pmatrix}=
\begin{pmatrix}
e^{i\alpha_1}\cos t & e^{i\alpha_2}\sin t\\
-e^{i\alpha_3}\sin t & e^{i\alpha_4}\cos t\\
\end{pmatrix}
\]

若令

\[
\begin{eqnarray}
\alpha_1=\theta_1+\theta_3,&\quad&\alpha_2=\theta_1+\theta_4,\\
\alpha_3=\theta_2+\theta_3,&\quad&\alpha_4=\theta_2+\theta_4,\\
\end{eqnarray}
\]

则有

\[
\begin{pmatrix}
e^{i\alpha_1}\cos t & e^{i\alpha_2}\sin t\\
-e^{i\alpha_3}\sin t & e^{i\alpha_4}\cos t\\
\end{pmatrix}=
\begin{pmatrix}
e^{i\theta_1} & 0\\
0 & e^{i\theta_2}\\
\end{pmatrix}
\begin{pmatrix}
\cos t & \sin t\\
-\sin t & \cos t\\
\end{pmatrix}
\begin{pmatrix}
e^{i\theta_3} & 0\\
0 & e^{i\theta_4}\\
\end{pmatrix}
\]