Answer

问题及解答

克莱因-戈登方程(Klein-Gordon equation)

Posted by haifeng on 2020-12-02 19:56:32 last update 2020-12-04 21:16:25 | Edit | Answers (1)

克莱因-戈登方程(Klein-Gordon equation)

 

描述光子运动的平面波

\[
A(\vec{r},t)=A_0 e^{i(\vec{k}\cdot\vec{r}-\omega t)}
\]

满足的方程是

\[
\frac{1}{c^2}\cdot\frac{\partial^2}{\partial t^2}A-\nabla^2 A=0.
\]

把平面波的表达式代入上述波动方程, 可得波矢量 $\vec{k}$ 与圆频率 $\omega$ 之间应满足的关系

\[
\frac{\omega^2}{c^2}=k^2.
\]

从光的粒子性来看, $E=\hbar\omega$, $\vec{p}=\hbar\vec{k}$, 则上式变为

\[
\frac{E^2}{c^2}=p^2
\]

 

Remark:

(1) 这里 $\nabla^2$ 应该是 $\mathrm{tr}\nabla^2$.

(2) $k=|\vec{k}|$. (参考书上 $\vec{k}$ 是粗体, 指波矢量, 而 $k$ 是该波矢量的模长.)

 


References:

王正行 编著《近代物理学》,  P.163

1

Posted by haifeng on 2020-12-04 20:54:51

记 $\vec{k}=(k_1,k_2,k_3)$, 设 $\vec{r}=(x,y,z)$.  于是

\[
\vec{k}\cdot\vec{r}=k_1 x+k_2 y+k_3 z.
\]

 

\[
\nabla=(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})=(\partial_x, \partial_y, \partial_z).
\]

 

\[
\frac{\partial}{\partial x}e^{i(\vec{k}\cdot\vec{r}-\omega t)}=e^{i(\vec{k}\cdot\vec{r}-\omega t)}\cdot i \frac{\partial}{\partial x}(k_1 x+k_2 y+k_3 z)=ik_1 e^{i(\vec{k}\cdot\vec{r}-\omega t)}.
\]

因此, 

\[
\nabla e^{i(\vec{k}\cdot\vec{r}-\omega t)}=ie^{i(\vec{k}\cdot\vec{r}-\omega t)}(k_1,k_2,k_3)=i\vec{k}e^{i(\vec{k}\cdot\vec{r}-\omega t)}.
\]

\[
\begin{split}
\nabla^2 e^{i(\vec{k}\cdot\vec{r}-\omega t)}&=\nabla(\nabla e^{i(\vec{k}\cdot\vec{r}-\omega t)})\\
&=\nabla(i\vec{k}e^{i(\vec{k}\cdot\vec{r}-\omega t)})\\
&=i\vec{k}^t\nabla(e^{i(\vec{k}\cdot\vec{r}-\omega t)})\\
&=i\vec{k}^t\cdot i\vec{k}e^{i(\vec{k}\cdot\vec{r}-\omega t)}\\
&=(-1)\vec{k}^t\cdot\vec{k}e^{i(\vec{k}\cdot\vec{r}-\omega t)}\\
\end{split}
\]

因此,

\[
\mathrm{tr}\nabla^2(e^{i(\vec{k}\cdot\vec{r}-\omega t)})=(-1)|\vec{k}|^2\cdot e^{i(\vec{k}\cdot\vec{r}-\omega t)}.
\]

另一方面, 

\[
\begin{aligned}
\frac{\partial}{\partial t}A&=A_0 e^{i(\vec{k}\cdot\vec{r}-\omega t)}\cdot(-i\omega)\\
\frac{\partial^2}{\partial t^2}A&=A_0 e^{i(\vec{k}\cdot\vec{r}-\omega t)}\cdot(-i\omega)^2\\
\end{aligned}
\]

代入方程, 得

\[
\frac{1}{c^2}\cdot(-1)A_0\cdot\omega^2\cdot e^{i(\vec{k}\cdot\vec{r}-\omega t)}-(-1)A_0|\vec{k}|^2\cdot e^{i(\vec{k}\cdot\vec{r}-\omega t)}=0
\]

这推出

\[
-\frac{\omega^2}{c^2}+|\vec{k}|^2=0.
\]

\[
\frac{\omega^2}{c^2}=k^2.
\]