Posted by haifeng on 2021-01-05 19:41:17 last update 2021-01-05 19:41:32 | Edit | Answers (1)
limn→∞[cos2πnn+1n+cos22πnn+2n+⋯+cos2nπnn+nn]
[分析] 碰到这种有 n 项求和的极限, 一般使用夹逼准则或视为积分的近似和.
1
Posted by haifeng on 2021-01-05 19:48:35
对于 i=1,2,…,n,
cos2iπnn+1⩽cos2iπnn+in⩽cos2iπnn
因此,
nn+1⋅∑i=1ncos2iπn⋅1n⩽∑i=1ncos2iπnn+in⩽∑i=1ncos2iπn⋅1n
由于
limn→∞∑i=1ncos2iπn⋅1n=∫01cos2(πx)dx=∫011+cos(2πx)2dx=12,
故
limn→∞∑i=1ncos2iπnn+in=12.
类似可证或可直接推出
limn→∞∑i=1nsin2iπnn+in=12.