Questions in category: 开发计划 (DevPlan)

<[1] [2] >

## 1. [DevPlan] 多项式输入的改进.

Posted by haifeng on 2023-03-18 12:50:56 last update 2023-03-18 12:50:56 | Answers (0) | 收藏

## 2. [DevPlan] 关于 Calculator 与 CalculatorApp 的编译

Posted by haifeng on 2023-03-15 12:38:45 last update 2023-03-15 12:38:45 | Answers (0) | 收藏

Calculator 工程中的文件均使用 ANSI 编码, 而 CalculatorApp 工程是在 Upp 下组织的, 故均使用 utf-8 BOM 编码.

C3927 “-＞“: 非函数声明符后不允许尾随返回类型等错误

## 3. [DevPlan] Calculator 中对执行语句的解析

Posted by haifeng on 2023-03-15 08:45:14 last update 2023-03-15 08:45:14 | Answers (0) | 收藏

## 4. [DevPlan] 动态调用函数.

Posted by haifeng on 2023-03-01 12:27:25 last update 2023-03-01 12:27:25 | Answers (0) | 收藏

## 5. [DevPlan] 增强 solve() 函数的功能, 使其可以处理等式中的函数.

Posted by haifeng on 2023-02-16 14:19:11 last update 2023-02-16 14:19:11 | Answers (0) | 收藏

>> Primes(100)
in> Primes(100)
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,

Time used:     000
out> 25

------------------------

>> solve(p(n)==41,n,1,25)
in> solve(p(n)~41,n,1,25)

------------------------

## 6. [DevPlan] 将十进制小数转为二进制

Posted by haifeng on 2023-02-12 20:16:07 last update 2023-02-12 20:36:55 | Answers (1) | 收藏

$0.5=\frac{1}{2},\quad 0.25=\frac{1}{2^2},\quad 0.125=\frac{1}{2^3},\quad 0.0625=\frac{1}{2^4},\quad$

$0.5=(0.1)_2,\quad 0.25=(0.01)_2,\quad 0.125=(0.001)_2,\quad 0.0625=(0.0001)_2$

in> printSeries(1/2^n,n,1,100,\n)
0.5
0.25
0.125
0.0625
0.03125
0.015625
0.0078125
0.00390625
0.001953125
0.0009765625
0.00048828125
0.000244140625
0.0001220703125
0.00006103515625
0.000030517578125
0.0000152587890625
0.00000762939453125
0.000003814697265625
0.0000019073486328125
0.00000095367431640625
0.000000476837158203125
0.0000002384185791015625
0.00000011920928955078125
0.000000059604644775390625
0.0000000298023223876953125
0.00000001490116119384765625
0.000000007450580596923828125
0.0000000037252902984619140625
0.00000000186264514923095703125
0.000000000931322574615478515625
0.0000000004656612873077392578125
0.00000000023283064365386962890625
0.000000000116415321826934814453125
0.0000000000582076609134674072265625
0.00000000002910383045673370361328125
0.000000000014551915228366851806640625
0.0000000000072759576141834259033203125
0.00000000000363797880709171295166015625
0.000000000001818989403545856475830078125
0.0000000000009094947017729282379150390625
0.00000000000045474735088646411895751953125
0.000000000000227373675443232059478759765625
0.0000000000001136868377216160297393798828125
0.00000000000005684341886080801486968994140625
0.000000000000028421709430404007434844970703125
0.0000000000000142108547152020037174224853515625
0.00000000000000710542735760100185871124267578125
0.000000000000003552713678800500929355621337890625
0.0000000000000017763568394002504646778106689453125
0.00000000000000088817841970012523233890533447265625
0.000000000000000444089209850062616169452667236328125
0.0000000000000002220446049250313080847263336181640625
0.00000000000000011102230246251565404236316680908203125
0.000000000000000055511151231257827021181583404541015625
0.0000000000000000277555756156289135105907917022705078125
0.00000000000000001387778780781445675529539585113525390625
0.000000000000000006938893903907228377647697925567626953125
0.0000000000000000034694469519536141888238489627838134765625
0.00000000000000000173472347597680709441192448139190673828125
0.000000000000000000867361737988403547205962240695953369140625
0.0000000000000000004336808689942017736029811203479766845703125
0.00000000000000000021684043449710088680149056017398834228515625
0.000000000000000000108420217248550443400745280086994171142578125
0.0000000000000000000542101086242752217003726400434970855712890625
0.00000000000000000002710505431213761085018632002174854278564453125
0.000000000000000000013552527156068805425093160010874271392822265625
0.0000000000000000000067762635780344027125465800054371356964111328125
0.00000000000000000000338813178901720135627329000271856784820556640625
0.000000000000000000001694065894508600678136645001359283924102783203125
0.0000000000000000000008470329472543003390683225006796419620513916015625
0.00000000000000000000042351647362715016953416125033982098102569580078125
0.000000000000000000000211758236813575084767080625169910490512847900390625
0.0000000000000000000001058791184067875423835403125849552452564239501953125
0.00000000000000000000005293955920339377119177015629247762262821197509765625
0.000000000000000000000026469779601696885595885078146238811314105987548828125
0.0000000000000000000000132348898008484427979425390731194056570529937744140625
0.00000000000000000000000661744490042422139897126953655970282852649688720703125
0.000000000000000000000003308722450212110699485634768279851414263248443603515625
0.0000000000000000000000016543612251060553497428173841399257071316242218017578125
0.00000000000000000000000082718061255302767487140869206996285356581211090087890625
0.000000000000000000000000413590306276513837435704346034981426782906055450439453125
0.0000000000000000000000002067951531382569187178521730174907133914530277252197265625
0.00000000000000000000000010339757656912845935892608650874535669572651386260986328125
0.000000000000000000000000051698788284564229679463043254372678347863256931304931640625
0.0000000000000000000000000258493941422821148397315216271863391739316284656524658203125
0.00000000000000000000000001292469707114105741986576081359316958696581423282623291015625
0.000000000000000000000000006462348535570528709932880406796584793482907116413116455078125
0.0000000000000000000000000032311742677852643549664402033982923967414535582065582275390625
0.00000000000000000000000000161558713389263217748322010169914619837072677910327911376953125
0.000000000000000000000000000807793566946316088741610050849573099185363389551639556884765625
0.0000000000000000000000000004038967834731580443708050254247865495926816947758197784423828125
0.00000000000000000000000000020194839173657902218540251271239327479634084738790988922119140625
0.000000000000000000000000000100974195868289511092701256356196637398170423693954944610595703125
0.0000000000000000000000000000504870979341447555463506281780983186990852118469774723052978515625
0.00000000000000000000000000002524354896707237777317531408904915934954260592348873615264892578125
0.000000000000000000000000000012621774483536188886587657044524579674771302961744368076324462890625
0.0000000000000000000000000000063108872417680944432938285222622898373856514808721840381622314453125
0.00000000000000000000000000000315544362088404722164691426113114491869282574043609201908111572265625
0.000000000000000000000000000001577721810442023610823457130565572459346412870218046009540557861328125
0.0000000000000000000000000000007888609052210118054117285652827862296732064351090230047702789306640625

------------------------

## 7. [DevPlan] 改进计算 $e$ 的算法

Posted by haifeng on 2023-02-11 22:53:50 last update 2023-02-11 22:54:05 | Answers (0) | 收藏

$e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}+\cdots$

The constant $e$ and its computation (free.fr)

## 8. [DevPlan] 多项式乘法的改进

Posted by haifeng on 2023-02-11 14:47:26 last update 2023-02-11 14:47:26 | Answers (0) | 收藏

>> :mode
Calculating mode: polyn

>> (3x-x^6)2x
in> (3x-x^6)2x

out>

------------------------

>> (3x-x^6)*2x
in> (3x-x^6)*2x

out> -2x^7+6x^2

------------------------

>> 2x(3x-x^6)
in> 2x(3x-x^6)

out> -2x^7+6x^2

------------------------

>> (3x-x^6)(2x)
in> (3x-x^6)*(2x)

out> -2x^7+6x^2

------------------------

>> (3x-x^6)(2)x
in> (3x-x^6)*(2)x

out> 2x^1

------------------------

>> (3x-x^6)(2)
in> (3x-x^6)*(2)

out> -2x^6+6x^1

------------------------

>> (3x-x^6)(2)(x)
in> (3x-x^6)*(2)*(x)

out> -2x^7+6x^2

------------------------

## 9. [DevPlan] 给定数列的递推公式, 打印数列的前若干项.

Posted by haifeng on 2023-02-04 10:15:46 last update 2023-02-05 20:57:46 | Answers (0) | 收藏

>> x=2
--------------------
>> y=(x^2+2)/(x+4)
----------------------------
type: string
name: y
value: (x^2+2)/(x+4)
value_computed: 1
--------------------
>> x=y
----------------------------
type: string
name: x
value: (y)
value_computed: 1
--------------------
>> y=(x^2+2)/(x+4)
----------------------------
type: string
name: y
value: (x^2+2)/(x+4)
value_computed: 0.6
--------------------
>> y
in> (0.6)

out> 0.6

------------------------

$a_1=2,\quad a_2=1,\quad a_3=\frac{3}{5},\quad a_4=\frac{59}{115}$

>> printRecursiveSeries((n^2+2)/(n+4),n,2,10,\n)
in> printRecursiveSeries((n^2+2)/(n+4),n,2,10,\n)
1
0.6
0.51304348
0.50148278
0.50016519
0.50001836
0.50000204
0.50000023
0.50000003
0.50000000

------------------------

>> :mode=fraction
Switch into fraction calculating mode.
e.g., 1/2+1/3 will return 5/6

>> printRecursiveSeries((n^2+2)/(n+4),n,2,10,\n)
in> printRecursiveSeries((n^2+2)/(n+4),n,2,10,\n)
1
3|5
59|115
9977|19895
891162579|1781736515
7143340759978621691|14286156943343253085
153071959210947077593344209777606577977|306142669345391339033273867001310578545
210877692684521073632686796614427621177608849307584544993392729791345410046579|421755194170454656838715623548179223078639124055129803382668276046037982971565
400224288891463132245588513262675832580155294150347514542265716671466587416216808432328845025373819376120940561495311696075422019773351889910473522146701691|800448537463409289970468912605629751484284184673346880817551678682345444242416699895610264410961644842938069217110623535798264962551964970919962105876723035
480538401224433076914322107044892889273619273662533194150556851587360737976789610786946600683365362655087382494630247466268531496887249965680481862880481156186674147551392766374398353649598099830434467531101824929956726062281597466600813520823786097638583908474247882847900409669162905195171606419138016780493977|961076797069916150637035067794869620082760044754356287427841416504669963950089965195105960796484833842639813529070119301247099221843344998442808673021667792117820296445588510208551637135412798708771976135899044690996631347449387596569472159842757832149769436510643469544737024421672111730371918134099365723865695

------------------------

$\begin{cases} a_n&=2a_{n-1}+2a_{n-2},\\ a_1&=3,\\ a_2&=8. \end{cases}$

## 10. [DevPlan] 雅可比符号

Posted by haifeng on 2023-02-03 10:32:38 last update 2023-02-11 17:11:30 | Answers (0) | 收藏

## 雅可比符号

Version: 0.536 已经实现 Jacobi(a,p) 函数.

<[1] [2] >