Answer

问题及解答

求不定积分 arctan2θdθ.

Posted by haifeng on 2022-01-12 08:47:44 last update 2022-01-14 15:40:00 | Edit | Answers (2)

求不定积分

arctan2θdθ=(arctanθ)2dθ,

 

或写成 x 的形式

(arctanx)2dx.

 

1

Posted by haifeng on 2022-01-14 16:24:10

x=arctanθ, 则 θ=tanx, 于是 

(arctanθ)2dθ=x2dtanx=x2tanxtanxd(x2)=x2tanx2xtanxdx

利用通常的换元、分部积分都难以计算此不定积分, 于是尝试将被积函数的某一部分进行 Taylor 展开. 当然也可以尝试使用复变函数中的围道积分(即利用留数定理).

但是 tanx 的 Taylor 展开是比较困难的, 涉及Bernoulli 数. (下面的公式参见 OEIS-A000182)

tanx=n=0an+1x2n+1(2n+1)!, 

其中

an=22n(22n1)|B2n|2n,

Bn 为 Bernoulli 数.

 

我们写出其前几项

tanx=x+13x3+215x5+17315x7+

 


Remark: 关于 tanx 的高阶导数, 见问题2582 .

2

Posted by haifeng on 2023-03-18 21:50:09

arctanx 的展开式为

arctanx=xx33+x55x77+=n=0(1)n2n+1x2n+1

这里 x[1,1].  (关于 arctanx 的高阶导数, 见问题2383, 2385, 24092584.)

于是

(arctanx)2=(xx33+x55x77+)(xx33+x55x77+)=x2x43+x65x87+x109x1211+x43+x69x835+x1037x1239++x65x853+x1055x1257+x87+x1073x1275+=x223x4+(115+133+151)x6(117+135+153+171)x8+(119+137+155+173+191)x10+

这里 x2m 的系数为

n=1m1(2n1)(2m(2n1))

例如, 当 m=4 时, x8 的系数为

n=141(2n1)(92n)

利用 Calculator 计算,

>> sum(1/((2*n-1)*(9-2*n)),n,1,4)
in> sum(1/((2*n-1)*(9-2*n)),n,1,4)
44|105
------------------------

 

因此,

(arctanx)2=x223x4+2345x644105x8+5631575x10325410395x12+88069315315x141138445045x16+15932696891885x18+

 

======================================

附计算

 

Switch into fraction calculating mode.
e.g., 1/2+1/3 will return 5/6

>> in> sum(1/((2*n-1)*(7-2*n)),n,1,3)
23|45                        (23 is a prime)
------------------------

>> in> sum(1/((2*n-1)*(9-2*n)),n,1,4)
44|105
------------------------

>> in> sum(1/((2*n-1)*(11-2*n)),n,1,5)
563|1575                    (563 is a prime)
------------------------

>> in> sum(1/((2*n-1)*(13-2*n)),n,1,6)
3254|10395
------------------------

>> in> sum(1/((2*n-1)*(15-2*n)),n,1,7)
88069|315315            (88069 is a prime)
------------------------

>> in> sum(1/((2*n-1)*(17-2*n)),n,1,8)
11384|45045
------------------------

>> in> sum(1/((2*n-1)*(19-2*n)),n,1,9)
1593269|6891885      (1593269 is a prime)
------------------------

>> in> sum(1/((2*n-1)*(21-2*n)),n,1,10)
15518938|72747675
------------------------

>> in> sum(1/((2*n-1)*(23-2*n)),n,1,11)
31730711|160044885            (31730711 is NOT a prime)
------------------------

>> in> sum(1/((2*n-1)*(25-2*n)),n,1,12)
186088972|1003917915
------------------------

>> in> sum(1/((2*n-1)*(27-2*n)),n,1,13)
3788707301|21751554825
------------------------

>> in> sum(1/((2*n-1)*(29-2*n)),n,1,14)
5776016314|35137127025
------------------------

>> in> sum(1/((2*n-1)*(31-2*n)),n,1,15)
340028535787|2183521465125
------------------------

>> in> sum(1/((2*n-1)*(33-2*n)),n,1,16)
667903294192|4512611027925
------------------------

>> in> sum(1/((2*n-1)*(35-2*n)),n,1,17)
10823198495797|76714387474725
------------------------