求不定积分 .
求不定积分
或写成
求不定积分
或写成
1
令
利用通常的换元、分部积分都难以计算此不定积分, 于是尝试将被积函数的某一部分进行 Taylor 展开. 当然也可以尝试使用复变函数中的围道积分(即利用留数定理).
但是
其中
我们写出其前几项
Remark: 关于
2
这里
于是
这里
例如, 当
利用 Calculator 计算,
>> sum(1/((2*n-1)*(9-2*n)),n,1,4)
in> sum(1/((2*n-1)*(9-2*n)),n,1,4)
44|105
------------------------
因此,
======================================
附计算
Switch into fraction calculating mode.
e.g., 1/2+1/3 will return 5/6
>> in> sum(1/((2*n-1)*(7-2*n)),n,1,3)
23|45 (23 is a prime)
------------------------
>> in> sum(1/((2*n-1)*(9-2*n)),n,1,4)
44|105
------------------------
>> in> sum(1/((2*n-1)*(11-2*n)),n,1,5)
563|1575 (563 is a prime)
------------------------
>> in> sum(1/((2*n-1)*(13-2*n)),n,1,6)
3254|10395
------------------------
>> in> sum(1/((2*n-1)*(15-2*n)),n,1,7)
88069|315315 (88069 is a prime)
------------------------
>> in> sum(1/((2*n-1)*(17-2*n)),n,1,8)
11384|45045
------------------------
>> in> sum(1/((2*n-1)*(19-2*n)),n,1,9)
1593269|6891885 (1593269 is a prime)
------------------------
>> in> sum(1/((2*n-1)*(21-2*n)),n,1,10)
15518938|72747675
------------------------
>> in> sum(1/((2*n-1)*(23-2*n)),n,1,11)
31730711|160044885 (31730711 is NOT a prime)
------------------------
>> in> sum(1/((2*n-1)*(25-2*n)),n,1,12)
186088972|1003917915
------------------------
>> in> sum(1/((2*n-1)*(27-2*n)),n,1,13)
3788707301|21751554825
------------------------
>> in> sum(1/((2*n-1)*(29-2*n)),n,1,14)
5776016314|35137127025
------------------------
>> in> sum(1/((2*n-1)*(31-2*n)),n,1,15)
340028535787|2183521465125
------------------------
>> in> sum(1/((2*n-1)*(33-2*n)),n,1,16)
667903294192|4512611027925
------------------------
>> in> sum(1/((2*n-1)*(35-2*n)),n,1,17)
10823198495797|76714387474725
------------------------