切比雪夫不等式
若 $a_1\leqslant a_2\leqslant\cdots\leqslant a_n$, $b_1\leqslant b_2\leqslant\cdots\leqslant b_n$, 则
\[
\sum_{i=1}^{n}a_i b_i\ \geqslant\ \frac{1}{n}(\sum_{i=1}^{n}a_i)\cdot(\sum_{i=1}^{n}b_i)\ \geqslant\ \sum_{i=1}^{n}a_i b_{n+1-i}.
\]
[Hint] 使用排序不等式证明.