1. 本原多项式
Posted by haifeng on 2025-04-22 21:42:03 last update 2025-04-22 21:50:34 | Answers (0) | 收藏
定义. 如果一个非零的整系数一元多项式
Posted by haifeng on 2025-04-22 21:42:03 last update 2025-04-22 21:50:34 | Answers (0) | 收藏
定义. 如果一个非零的整系数一元多项式
Posted by haifeng on 2025-03-29 09:09:32 last update 2025-03-29 09:20:09 | Answers (0) | 收藏
设
换句话说,
Posted by haifeng on 2024-09-11 16:08:07 last update 2024-09-11 16:08:07 | Answers (0) | 收藏
设有
则称
为由这
Posted by haifeng on 2024-08-05 11:11:14 last update 2024-08-08 22:36:47 | Answers (1) | 收藏
因式分解
>> (x^4-44*x^3+351*x^2+176*x-484)/(x-1)
in> (x^4-44*x^3+351*x^2+176*x-484)/(x-1)
out> x^3-43x^2+308x^1+484
------------------------
Posted by haifeng on 2023-04-14 15:07:12 last update 2023-04-14 15:12:09 | Answers (0) | 收藏
求
例如:
Posted by haifeng on 2023-04-12 08:28:46 last update 2023-04-12 08:44:15 | Answers (0) | 收藏
Specht 多项式(Specht polynomials)和Specht 模(Specht modules)不仅被应用于对称群的表示理论, 而且也被应用于其他 反射群(reflection groups), 例如八面体群(octahedral groups).
对称群和八面体群都属于反射群.
群
参考
rt.representation theory - Specht polynomials for dihedral groups - MathOverflow
http://www.cmi.ac.in/~pdeshpande/projects/irreps.pdf
Posted by haifeng on 2023-04-01 20:16:04 last update 2023-04-20 22:10:35 | Answers (6) | 收藏
求下列一元三次方程的根.
(1)
(2)
(3)
(4)
(5)
(6)
Posted by haifeng on 2023-04-01 17:23:44 last update 2023-04-01 20:25:02 | Answers (2) | 收藏
(1)
(2)
Posted by haifeng on 2023-04-01 15:15:54 last update 2023-04-01 15:15:54 | Answers (2) | 收藏
(1)
(2)
(3)
Posted by haifeng on 2023-04-01 14:25:22 last update 2023-04-01 14:25:22 | Answers (1) | 收藏
1. 用
(1)
(2)
题目来自 [1] P. 44
References:
[1] 北京大学数学系几何与代数教研室代数小组 编《高等代数》