Posted by haifeng on 2021-12-28 21:15:15 last update 2021-12-28 21:51:57 | Edit | Answers (2)
证明:
limx→0xln(sinx)=0.
limx→π2ln(cosx)⋅ln(sinx)=0.
1
Posted by haifeng on 2021-12-28 21:16:38
limx→0xln(sinx)=limx→0ln(sinx)1x
应用洛必达法则即可求出.
2
Posted by haifeng on 2021-12-28 21:59:31
(2)
limx→π2ln(cosx)⋅ln(sinx)=limx→π2ln(cosx)⋅ln(1+(sinx−1))=limx→π2ln(cosx)⋅(sinx−1)=limx→π2ln(cosx)1sinx−1=limx→π2−sinxcosx−1(sinx−1)2⋅cosx=limx→π2(sinx−1)2cos2x
而
limx→π2sinx−1cosx=limx→π2cosx−sinx=0,
故原极限为 0. Q.E.D.