Answer

问题及解答

证明: limx0xln(sinx)=0.

Posted by haifeng on 2021-12-28 21:15:15 last update 2021-12-28 21:51:57 | Edit | Answers (2)

证明:

limx0xln(sinx)=0.

limxπ2ln(cosx)ln(sinx)=0.

1

Posted by haifeng on 2021-12-28 21:16:38

limx0xln(sinx)=limx0ln(sinx)1x

应用洛必达法则即可求出.

2

Posted by haifeng on 2021-12-28 21:59:31

(2)

limxπ2ln(cosx)ln(sinx)=limxπ2ln(cosx)ln(1+(sinx1))=limxπ2ln(cosx)(sinx1)=limxπ2ln(cosx)1sinx1=limxπ2sinxcosx1(sinx1)2cosx=limxπ2(sinx1)2cos2x

limxπ2sinx1cosx=limxπ2cosxsinx=0,

故原极限为 0.  Q.E.D.