Answer

问题及解答

xn=k=1n1k2n, 证明 limnxn 存在.

Posted by haifeng on 2025-01-18 10:34:34 last update 2025-01-18 10:34:34 | Edit | Answers (1)

xn=k=1n1k2n, 证明 limnxn 存在.

1

Posted by haifeng on 2025-01-18 12:47:41

证明:

(1)  {xn} 是递减数列.

xn+1xn=(k=1n+11k2n+1)(k=1n1k2n)=1n+12(n+1n)=1n+12n+1+n<0

(2) {xn} 存在下界.

利用

2(k+1k)=2k+1+k<1k,

我们有

xn=k=1n1k2n>k=1n2(k+1k)2n>2(n+11)2n=2n+1+n2>2

因此, {xn} 有下界.