Answer

问题及解答

证明: $\sqrt{1+\sqrt{x}}-1=o(1)$ $(x\rightarrow 0)$.

Posted by haifeng on 2025-09-19 10:01:07 last update 2025-09-19 10:01:07 | Edit | Answers (1)

证明: $\sqrt{1+\sqrt{x}}-1=o(1)$ $(x\rightarrow 0)$.

1

Posted by haifeng on 2025-09-27 10:08:50

证明: 

\[
\lim_{x\rightarrow 0^+}\Bigl(\sqrt{1+\sqrt{x}}-1\Bigr)=\lim_{x\rightarrow 0^+}\frac{\sqrt{x}}{\sqrt{1+\sqrt{x}}+1}=0.
\]


若用定义证明.

$\forall\ \varepsilon >0$,  $\exists\ \delta=4\varepsilon^2$, 当 $0 < |x|<\delta$ 时, 有

\[
\biggl|\sqrt{1+\sqrt{x}}-1-0\biggr|=\sqrt{1+\sqrt{x}}-1=\frac{\sqrt{x}}{\sqrt{1+\sqrt{x}}+1} < \frac{\sqrt{\delta}}{2}=\varepsilon.
\]

故由定义, $\lim\limits_{x\rightarrow 0^+}(\sqrt{1+\sqrt{x}}-1)=0$.