Answer

问题及解答

求极限 $\lim\limits_{x\rightarrow+\infty}\dfrac{\displaystyle\int_{0}^{x}e^{t^2}\mathrm{d}t}{\displaystyle\int_{0}^{x}e^{2t^2}\mathrm{d}t}$.

Posted by haifeng on 2025-12-09 16:57:40 last update 2025-12-17 09:58:53 | Edit | Answers (1)

求极限

\[
\lim_{x\rightarrow+\infty}\frac{\displaystyle\int_{0}^{x}e^{t^2}\mathrm{d}t}{\displaystyle\int_{0}^{x}e^{2t^2}\mathrm{d}t}
\]

 

1

Posted by haifeng on 2025-12-17 10:06:07

由于

\[
\int_{0}^{x}e^{2t^2}\mathrm{d}t > \int_{0}^{x}\mathrm{d}x=x\rightarrow+\infty,\quad (x\rightarrow+\infty)
\]

故原极限可以使用洛必达法则. 因此,

\[
\lim_{x\rightarrow+\infty}\frac{\displaystyle\int_{0}^{x}e^{t^2}\mathrm{d}t}{\displaystyle\int_{0}^{x}e^{2t^2}\mathrm{d}t}\xlongequal{\text{洛}}\lim_{x\rightarrow+\infty}\frac{e^{x^2}}{e^{2x^2}}=\lim_{x\rightarrow+\infty}\frac{1}{e^{x^2}}=0.
\]