问题

数论 >> 一般数论 >> 初等数论
Questions in category: 初等数论 (Elementary Number Theory).

从 $\mathbb{N}-\{1\}$ 中删去 2,3,5,7,11 的倍数, 得到数列 $\{u_n\}_{n=1}^{+\infty}$. 求 $d_n=u_{n+1}-u_n$.

Posted by haifeng on 2011-06-16 12:53:22 last update 0000-00-00 00:00:00 | Answers (0) | 收藏


$d_n$ 的周期为 (2-1)(3-1)(5-1)(7-1)(11-1)=480. 周期的构成为:

4 2 4 6 2 6 4 2 4 6 6 2 6 4 2 6 4 6 8 4 2 4 2 4 14 4 6 2 10 2 6 6 4 2 4 6 2 10 2 4 2 12 10 2 4 2 4 6 2 6 4 6 6 6 2 6 4 2 6 4 6 8 4 2 4 6 8 6 10 2 4 6 2 6 6 4 2 4 6 2 6 4 2 6 10 2 10 2 4 2 4 6 8 4 2 4 12 2 6 4 2 6 4 6 12 2 4 2 4 8 6 4 6 2 4 6 2 6 10 2 4 6 2 6 4 2 4 2 10 2 10 2 4 6 6 2 6 6 4 6 6 2 6 4 2 6 4 6 8 4 2 6 4 8 6 4 6 2 4 6 8 6 4 2 10 2 6 4 2 4 2 10 2 10 2 4 2 4 8 6 4 2 4 6 6 2 6 4 8 4 6 8 4 2 4 2 4 8 6 4 6 6 6 2 6 6 4 2 4 6 2 6 4 2 4 2 10 2 10 2 6 4 6 2 6 4 2 4 6 6 8 4 2 6 10 8 4 2 4 2 4 8 10 6 2 4 8 6 6 4 2 4 6 2 6 4 6 2 10 2 10 2 4 2 4 6 2 6 4 2 4 6 6 2 6 6 6 4 6 8 4 2 4 2 4 8 6 4 8 4 6 2 6 6 4 2 4 6 8 4 2 4 2 10 2 10 2 4 2 4 6 2 10 2 4 6 8 6 4 2 6 4 6 8 4 6 2 4 8 6 4 6 2 4 6 2 6 6 4 6 6 2 6 6 4 2 10 2 10 2 4 2 4 6 2 6 4 2 10 6 2 6 4 2 6 4 6 8 4 2 4 2 12 6 4 6 2 4 6 2 12 4 2 4 8 6 4 2 4 2 10 2 10 6 2 4 6 2 6 4 2 4 6 6 2 6 4 2 10 6 8 6 4 2 4 8 6 4 6 2 4 6 2 6 6 6 4 6 2 6 4 2 4 2 10 12 2 4 2 10 2 6 4 2 4 6 6 2 10 2 6 4 14 4 2 4 2 4 8 6 4 6 2 4 6 2 6 6 4 2 4 6 2 6 4 2 4 12 2 12