首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

概率统计 >> 概率论
Questions in category: 概率论 (Probability).

泊松(Poisson)分布 $P(\lambda)$

Posted by haifeng on 2018-05-25 06:32:08 last update 2020-04-06 18:35:57 | Answers (3)


泊松(Poisson)分布 $P(\lambda)$

若随机变量 $X$ 的概率分布为

\[
P\{X=k\}=\frac{\lambda^k}{k!}e^{-\lambda},\quad k=0,1,2,\ldots.
\]

其中 $\lambda > 0$, 则称 $X$ 服从参数为 $\lambda$ 的泊松分布, 记为 $X\sim P(\lambda)$.

历史上, 泊松分布是作为二项分布的近似而引入的.

所基于的理论是

 

Thm. (泊松定理) 设 $\lim\limits_{n\rightarrow+\infty}np_n=\lambda > 0$, 则

\[
\lim_{n\rightarrow+\infty}C_n^k p_n^k(1-p_n)^{n-k}=\frac{\lambda^k}{k!}e^{-\lambda},\quad k=0,1,2,\ldots,n.
\]

 

 


设 $X\sim P(\lambda)$, 则 $E(X)=\lambda$, $D(X)=\lambda$.

 


[English]

The Poisson Probability Distribution

[Def] A random variable $X$ is said to have a Poisson distribution if the pmf of $X$ is

\[
p(x;\lambda)=\frac{e^{-\lambda}\lambda^x}{x!},\quad x=0,1,2,\ldots
\]

for some $\lambda > 0$.


The rationale for using the Poisson distribution in many situation is provided by the following the above proposition. Also it can be stated as follows:

[Prop] Suppose that in the binomial pmf $b(x;n,p)$, we let $n\rightarrow\infty$ and $p\rightarrow 0$ in such a way that $np$ approaches a value $\lambda > 0$. Then $b(x;n,p)\rightarrow p(x;\lambda)$.

 

[Prop] If $X$ has a Poisson distribution with parameter $\lambda$, then $E(X)=V(X)=\lambda$.

 

References:

The above content in English is copied from the following book:

《Probability and Statistics For Engineering and The Sciences》(Fifth Edtion) P.131
Author: Jay L. Devore

Section 5 of Chapter 3.