首页

欢迎

 

Welcome

欢迎, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

分析 >> 复分析
Questions in category: 复分析 (Complex Analysis).

复分析概要

Posted by haifeng on 2022-11-05 08:59:53 last update 2022-11-05 08:59:53 | Answers (0)


全纯的定义

Cauchy 积分公式  ==>  全纯函数的均值性质  ==> 最大模原理  ==> Schwarz 引理

 

 

Cauchy 积分公式

\[
f(z)=\frac{1}{2\pi i}\int_{\partial D(z_0, r)}\frac{f(\zeta)}{\zeta-z_0}\mathrm{d}\zeta
\]

全纯函数的均值性质,  指的是全纯函数 $f(z)$ 在某点 $z_0$ 处的值等于 $f(z)$ 在以 $z_0$ 为中心的一个圆上的值的平均.

具体的,

\[
f(z)=\frac{1}{2\pi}\int_{0}^{2\pi}f(z_0+re^{i\theta})\mathrm{d}\theta
\]