Answer

问题及解答

[Exer11-3] Exercise 31 of Book {Devore2017B} P.169

Posted by haifeng on 2020-04-29 17:23:10 last update 2020-04-29 19:29:37 | Edit | Answers (1)

Suppose the force acting on a column that helps to support a building is normally distributed with mean $15.0$ kips and standard deviation $1.25$ kips. What is the probability that the force

  • (a) Is at most $17$ kips?
  • (b) Is between $10$ and $12$ kips?
  • (c) Differs from $15.0$ kips by at most $2$ standard deviations?
     

 

Remark:

1kips=1千磅=1000磅=453.59237千克(kg)

 


假设有助于支撑建筑物的作用在柱上的力满足均值为 15千磅, 标准差为 1.25千磅的正态分布.

  • (a) 力至多为 $17$ 千磅的概率是多少?
  • (b) 力在 $10$ 千磅和 $12$ 千磅之间的概率是多少?
  • (c) 力和 $15$ 千磅之差在 $2$ 个标准差之间的概率是多少?

 

1

Posted by haifeng on 2020-04-29 19:53:20

Let $F$ denote the force. Then by assumption, $F\sim N(15,1.25)$. Where $\mu=15$, $\sigma=1.25$.

Let $Z:=\frac{F-\mu}{\sigma}=\frac{F-15}{1.25}$, then $Z\sim N(0,1)$.

Note that $F=\sigma\cdot Z+\mu=1.25\cdot Z+15$.

(a)

The probability that the force is at most $17$ kips is $P(F\leqslant 17)$. 

\[
P(F\leqslant 17)=P(1.25\cdot Z+15\leqslant 17)=P(1.25\cdot Z\leqslant 2)=P(Z\leqslant 1.6)=\Phi(1.6)
\]

By Table A.3, we have $\Phi(1.6)=0.9452$. Thus, The probability that the force is at most $17$ kips is $0.9452$.


(b)

The probability that the force is between $10$ and $12$ kips is $P(10\leqslant F\leqslant 12)$.

\[
\begin{split}
P(10\leqslant F\leqslant 12)&=P(10\leqslant 1.25\cdot Z+15\leqslant 12)=P(-5\leqslant 1.25\cdot Z\leqslant -3)\\
&=P(-4\leqslant Z\leqslant -2.4)=\Phi(-2.4)-\Phi(-4)
\end{split}
\]

By Table A.3, we have $\Phi(-2.4)=0.0082$, $\Phi(-4)=0$. Thus, $P(10\leqslant F\leqslant 12)=0.0082-0=0.0082$.

That is, the probability that the force is between $10$ and $12$ kips is $0.0082$.


(c)

The probability that the force differs from $15.0$ kips by at most $2$ standard deviations is

\[
\begin{split}
P(|F-15|\leqslant 2\sigma)&=P(|F-\mu|\leqslant 2\sigma)=P(\frac{|F-\mu|}{\sigma}\leqslant 2)\\
&=P(|Z|\leqslant 2)=2\cdot P(0\leqslant Z\leqslant 2)=2\cdot(\Phi(2)-\Phi(0))\\
&=2\cdot(\Phi(2)-0.5)
\end{split}
\]

By Table A.3, we have $\Phi(2)=0.9772$. Hence, 

\[
P(|F-15|\leqslant 2\sigma)=2\cdot(\Phi(2)-0.5)=2\cdot(0.9772-0.5)=0.9544.
\]

That is, the probability that the force differs from $15.0$ kips by at most $2$ standard deviations is $0.9544$.