Answer

问题及解答

[Exer11-4] Exercise 33 of Book {Devore2017B} P.169

Posted by haifeng on 2020-04-29 17:24:13 last update 2020-04-29 19:58:50 | Edit | Answers (1)

Suppose the diameter at breast height(in.) of trees of a certain type is normally distributed with $\mu=8.8$ and $\sigma=2.8$, as suggested in the article "Simulating a Harvester-Forwarder Softwood Thinning" (Forest Products J., May 1997:36--41).

  • (a) What is the probability that the diameter of a randomly selected tree will be at least $10$ in.? Will exceed $10$ in.?
  • (b) What is the probability that the diameter of a randomly selected tree will exceed $20$ in.?
  • (c) What is the probability that the diameter of a randomly selected tree will be between $5$ and $10$ in.?
  • What value $c$ is such that the interval $(8.8-c,8.8+c)$ includes $98\%$ of all diameter values?
     

 


Remark:

For the definition of DBH(Diameter at Breast Height), we can refer to https://www.thoughtco.com/what-is-diameter-breast-height-1341720 .

1

Posted by haifeng on 2020-04-29 20:43:58

Let $D$ denote the diameter of a randomly selected tree. By assumption, $D\sim N(\mu,\sigma)$, where $\mu=8.8$, $\sigma=2.8$.

Let $Z=\frac{D-\mu}{\sigma}=\frac{D-8.8}{2.8}$. Then $D\sim N(0,1)$.

Note that $D=\sigma\cdot Z+\mu=2.8\cdot Z+8.8$

(a)

The probability that the diameter of a randomly selected tree will be at least $10$ (in.) is

\[
\begin{split}
P(D\geqslant 10)&=P(2.8\cdot Z+8.8\geqslant 10)=P(2.8\cdot Z\geqslant 1.2)\\
&=P(Z\geqslant 0.42857143)=1-P(Z < 0.42857143)=1-P(Z\leqslant 0.42857143)\\
&=1-\Phi(0.42857143)
\end{split}
\]

By Table A.3, we have $P(0.43)=0.6664$, hence

\[P(D\geqslant 10)=1-\Phi(0.42857143)\approx 1-0.6664=0.3336\]

 

Obviously, the probability that the diameter of a randomly selected tree will exceed $10$ (in.) is the same value, i.e., $0.3336$.


(b)

The probability that the diameter of a randomly selected tree will exceed $20$ (in.) is

\[
\begin{split}
P(D > 20)&=P(D\geqslant 20)=P(2.8\cdot Z+8.8\geqslant 20)=P(2.8\cdot Z\geqslant 11.2)\\
&=P(Z\geqslant 4)=1-P(Z < 4)=1-P(Z\leqslant 4)\\
&=1-\Phi(4)
\end{split}
\]

By Table A.3, we have $P(4)\approx 1$, hence

\[P(D\geqslant 20)=1-\Phi(4)\approx 1-1=0\]

That is, the probability that the diameter of a randomly selected tree will exceed $20$ (in.) is approximately $0$.


(c)

The probability that the diameter of a randomly selected tree will be between $5$ and $10$ (in.) is

\[
\begin{split}
P(5\leqslant D\leqslant 10)&=P(5\leqslant 2.8\cdot Z+8.8\leqslant 10)=P(-3.8\leqslant 2.8\cdot Z\leqslant 1.2)\\
&=P(-1.35714286\leqslant Z\leqslant 0.42857143)=P(0.42857143)-P(-1.35714286)\\
\end{split}
\]

By Table A.3, we have $P(0.43)=0.6664$ and $P(-1.36)=0.0869$, hence

\[P(5\leqslant D\leqslant 10)=P(0.42857143)-P(-1.35714286)\approx P(0.43)-P(-1.36)=0.6664-0.0869=0.5795.\]

That is, the probability that the diameter of a randomly selected tree will be between $5$ and $10$ (in.) is approximately $0.5795$.


(d)

If the interval $(8.8-c,8.8+c)$ includes $98\%$ of all diameter values, then

\[
P(8.8-c\leqslant D\leqslant 8.8+c)=98\%
\]

Note that $\mu=8.8$, and

\[
\begin{split}
8.8-c\leqslant D\leqslant 8.8+c &\Rightarrow -c\leqslant D-\mu\leqslant c\\
&\Rightarrow -\frac{c}{\sigma}\leqslant\frac{D-\mu}{\sigma}\leqslant\frac{c}{\sigma}\\
&\Rightarrow -\frac{c}{2.8}\leqslant Z\leqslant\frac{c}{2.8}
\end{split}
\]

Thus,

\[P(-\frac{c}{2.8}\leqslant Z\leqslant\frac{c}{2.8})=0.98\]

We have

\[
\begin{split}
0.98&=P(-\frac{c}{2.8}\leqslant Z\leqslant\frac{c}{2.8})=2\cdot P(0\leqslant Z\leqslant\frac{c}{2.8})\\
&=2\cdot(\Phi(\frac{c}{2.8})-\Phi(0))=2\cdot(\Phi(\frac{c}{2.8})-0.5)
\end{split}
\]

It infers that $\Phi(\frac{c}{2.8})=0.98/2+0.5=0.99$. By Table A.3, we have $\Phi(2.3+0.03)=0.9901$.

Hence, $\frac{c}{2.8}\approx 2.3+0.03=2.33$. Then, we have $c\approx 6.524$.