Answer

问题及解答

[Homework] 1.6

Posted by haifeng on 2020-10-12 12:12:27 last update 2020-10-12 15:18:00 | Edit | Answers (2)

P. 44--45

4. 求下列极限

(4) $\lim\limits_{x\rightarrow\frac{\pi}{2}}\dfrac{\cos x}{2x-\pi}$

 

(5) $\lim\limits_{x\rightarrow\pi}\dfrac{\sin x}{x-\pi}$

 

(7) $\lim\limits_{x\rightarrow 0^-}\dfrac{x}{\sqrt{1-\cos x}}$

 


5. 求下列极限

(4)  $\lim\limits_{x\rightarrow 1}(3-2x)^{\frac{3}{x-1}}$

 

(6)  $\lim\limits_{x\rightarrow\infty}\Bigl(\frac{x+2}{x-2}\Bigr)^x$

 

(8)  $\lim\limits_{x\rightarrow\infty}\biggl(\frac{n^2+3}{n^2+1}\biggr)^{n^2}$

 

1

Posted by haifeng on 2020-10-12 15:14:59

4. 求下列极限

(4) $\lim\limits_{x\rightarrow\frac{\pi}{2}}\dfrac{\cos x}{2x-\pi}$

解:

\[
\text{原式}=\lim_{x\rightarrow\frac{\pi}{2}}\frac{\sin(\frac{\pi}{2}-x)}{2(x-\frac{\pi}{2})}=-\frac{1}{2}
\]

 


(5) $\lim\limits_{x\rightarrow\pi}\dfrac{\sin x}{x-\pi}$

解:

\[
\text{原式}=\lim_{x\rightarrow\pi}\frac{\sin(\pi-x)}{x-\pi}=-1
\]

 


(7) $\lim\limits_{x\rightarrow 0^-}\dfrac{x}{\sqrt{1-\cos x}}$

解:

\[
\text{原式}=\lim_{x\rightarrow 0^-}\frac{x}{\sqrt{2\sin^2\frac{x}{2}}}=\lim_{x\rightarrow 0^-}\frac{2\cdot\frac{x}{2}}{\sqrt{2}\cdot\sin\frac{|x|}{2}}=\sqrt{2}\cdot\lim_{x\rightarrow 0^-}\frac{-\frac{|x|}{2}}{\sin\frac{|x|}{2}}=-\sqrt{2}
\]

2

Posted by haifeng on 2020-10-12 20:17:34

5. 求下列极限

(4)  $\lim\limits_{x\rightarrow 1}(3-2x)^{\frac{3}{x-1}}$

解:

\[
\begin{split}
\text{原式}&=\lim_{x\rightarrow 1}\big(1+2(1-x)\bigr)^{\frac{3}{x-1}}\\
&=\lim_{x\rightarrow 1}\biggl[\Big(1+2(1-x)\Bigr)^{\dfrac{1}{2(1-x)}}\biggr]^{-6}\\
&=\biggl[\lim_{x\rightarrow 1}\Big(1+2(1-x)\Bigr)^{\dfrac{1}{2(1-x)}}\biggr]^{-6}\\
&=e^{-6}
\end{split}
\]


(6)  $\lim\limits_{x\rightarrow\infty}\Bigl(\frac{x+2}{x-2}\Bigr)^x$

解:

\[
\begin{split}
\text{原式}&=\lim_{x\rightarrow\infty}\Bigl(1+\frac{4}{x-2}\Bigr)^x\\
&=\lim_{x\rightarrow\infty}\Biggl\{\biggl[\Bigl(1+\frac{4}{x-2}\Bigr)^{\frac{x-2}{4}}\biggr]^4\cdot(1+\frac{4}{x-2})^2\Biggr\}\\
&=e^4\cdot 1\\
&=e^4
\end{split}
\]


(8)  $\lim\limits_{x\rightarrow\infty}\biggl(\frac{n^2+3}{n^2+1}\biggr)^{n^2}$

解:

\[
\begin{split}
\text{原式}&=\lim_{x\rightarrow\infty}\biggl(1+\frac{2}{n^2+1}\biggr)^{n^2}\\
&=\lim_{x\rightarrow\infty}\Biggl\{\biggl[\Bigl(1+\frac{2}{n^2+1}\Bigr)^{\frac{n^2+1}{2}}\biggr]^{2}\cdot(1+\frac{2}{n^2+1})^{-1}\Biggr\}\\
&=e^2\cdot 1\\
&=e^2
\end{split}
\]