Answer

问题及解答

[Homework] 1.6

Posted by haifeng on 2020-10-12 12:12:27 last update 2020-10-12 15:18:00 | Edit | Answers (2)

P. 44--45

4. 求下列极限

(4) limxπ2cosx2xπ

 

(5) limxπsinxxπ

 

(7) limx0x1cosx

 


5. 求下列极限

(4)  limx1(32x)3x1

 

(6)  limx(x+2x2)x

 

(8)  limx(n2+3n2+1)n2

 

1

Posted by haifeng on 2020-10-12 15:14:59

4. 求下列极限

(4) limxπ2cosx2xπ

解:

原式=limxπ2sin(π2x)2(xπ2)=12

 


(5) limxπsinxxπ

解:

原式=limxπsin(πx)xπ=1

 


(7) limx0x1cosx

解:

原式=limx0x2sin2x2=limx02x22sin|x|2=2limx0|x|2sin|x|2=2

2

Posted by haifeng on 2020-10-12 20:17:34

5. 求下列极限

(4)  limx1(32x)3x1

解:

原式=limx1(1+2(1x))3x1=limx1[(1+2(1x))12(1x)]6=[limx1(1+2(1x))12(1x)]6=e6


(6)  limx(x+2x2)x

解:

原式=limx(1+4x2)x=limx{[(1+4x2)x24]4(1+4x2)2}=e41=e4


(8)  limx(n2+3n2+1)n2

解:

原式=limx(1+2n2+1)n2=limx{[(1+2n2+1)n2+12]2(1+2n2+1)1}=e21=e2