Answer

问题及解答

[Homework] 2.1

Posted by haifeng on 2020-10-18 19:54:26 last update 2020-10-18 19:55:21 | Edit | Answers (2)

3. 设 $f(x)=\begin{cases}\dfrac{\ln(1+3x^2)}{x},&x\neq 0,\\ 0, & x=0,\end{cases}$     求 $f'(0)$

 

6. 设函数 $f(x)$ 在点 $x_0$ 处可导, $\alpha$ 与 $\beta$ 均为常数, 证明:

\[
\lim_{h\rightarrow 0}\frac{f(x_0+\alpha h)-f(x_0+\beta h)}{h}=(\alpha-\beta)f'(x_0).
\]

1

Posted by haifeng on 2020-10-19 23:02:03

3.

\[
\begin{split}
f'(0)&=\lim_{x\rightarrow 0}\frac{f(x)-f(0)}{x-0}\\
&=\lim_{x\rightarrow 0}\frac{\frac{\ln(1+3x^2)}{x}-0}{x-0}\\
&=\lim_{x\rightarrow 0}\frac{\ln(1+3x^2)}{x^2}\\
&=\lim_{x\rightarrow 0}\frac{3x^2}{x^2}\\
&=3
\end{split}
\]

2

Posted by haifeng on 2020-10-19 23:10:16

6. 证明:

\[
\begin{split}
\text{LHS}&=\lim_{h\rightarrow 0}\frac{f(x_0+\alpha h)-f(x_0)+f(x_0)-f(x_0+\beta h)}{h}\\
&=\lim_{h\rightarrow 0}\Bigl[\alpha\cdot\frac{f(x_0+\alpha h)-f(x_0)}{\alpha h}-\beta\cdot\frac{f(x_0+\beta h)-f(x_0)}{\beta h}\Bigr]\\
&=\alpha\cdot\lim_{h\rightarrow 0}\frac{f(x_0+\alpha h)-f(x_0)}{\alpha h}-\beta\cdot\lim_{h\rightarrow 0}\frac{f(x_0+\beta h)-f(x_0)}{\beta h}\\
&=\alpha f'(x_0)-\beta f'(x_0)\\
&=(\alpha-\beta)f'(x_0)=\text{RHS}
\end{split}
\]

这里第二个等号用到了条件 $f(x)$ 在 $x_0$ 处可导.