Answer

问题及解答

柯西行列式(Cauchy determinant)

Posted by haifeng on 2022-04-05 23:25:25 last update 2022-04-05 23:43:27 | Edit | Answers (1)

设 $A_n=(\frac{1}{x_i+y_j})_{1\leqslant i,j\leqslant n}$, 则其行列式为
\[
\det(A_n)=
\begin{vmatrix}
\frac{1}{x_1+y_1} & \frac{1}{x_1+y_2} & \cdots & \frac{1}{x_1+y_n}\\
\frac{1}{x_2+y_1} & \frac{1}{x_2+y_2} & \cdots & \frac{1}{x_2+y_n}\\
\vdots & \vdots & &\vdots\\
\frac{1}{x_n+y_1} & \frac{1}{x_n+y_2} & \cdots & \frac{1}{x_n+y_n}\\
\end{vmatrix}
\]
证明:
\[
\det(A)=\dfrac{\prod\limits_{1\leqslant i < j\leqslant n}(x_i-x_j)(y_i-y_j)}{\prod\limits_{1\leqslant i,j\leqslant n}(x_i+y_j)}
\]

1

Posted by haifeng on 2022-04-06 20:07:44

Pf.  $n=2$ 时容易验证是成立的.

\[
\begin{split}
|A|=\begin{vmatrix}
\frac{1}{x_1+y_1} & \frac{1}{x_1+y_2}\\
\frac{1}{x_2+y_1} & \frac{1}{x_2+y_2}
\end{vmatrix}&=\frac{1}{x_1+y_1} \cdot\frac{1}{x_2+y_2}-\frac{1}{x_1+y_2}\cdot\frac{1}{x_2+y_1}\\
&=\frac{(x_1+y_2)(x_2+y_1)-(x_1+y_1)(x_2+y_2)}{(x_1+y_1)(x_2+y_2)(x_1+y_2)(x_2+y_1)}\\
&=\frac{x_1y_1+x_2y_2-x_1y_2-x_2y_1}{\prod_{i,j=1}^{2}(x_i+y_j)}\\
&=\frac{(x_1-x_2)(y_1-y_2)}{\prod_{i,j=1}^{2}(x_i+y_j)}.
\end{split}
\]