Posted by haifeng on 2024-05-14 23:32:07 last update 2024-05-14 23:32:07 | Edit | Answers (1)
f(x,y)={xysin1x2+y2,(x,y)≠(0,0),0,(x,y)=(0,0).
1
Posted by haifeng on 2024-05-14 23:38:23
由于
0⩽|xysin1x2+y2|⩽|xy|⩽x2+y22,
故
lim(x,y)→(0,0)f(x,y)=lim(x,y)→(0,0)xysin1x2+y2=0.
即函数 f(x,y) 在 (0,0) 处连续.
在 (0,0) 处的偏导数:
fx′(0,0)=limx→0f(x,0)−f(0,0)x−0=limx→0x⋅0sin1x2+02−0x=0.
fy′(0,0)=limy→0f(0,y)−f(0,0)y−0=limy→00⋅ysin102+y2−0y=0.
故 f(x,y) 在原点的偏导数 fx′(0,0), fy′(0,0) 都存在, 且都是 0.