Answer

问题及解答

对于下面的二元函数, 研究其在原点的连续性、可导性.

Posted by haifeng on 2024-05-14 23:32:07 last update 2024-05-14 23:32:07 | Edit | Answers (1)

f(x,y)={xysin1x2+y2,(x,y)(0,0),0,(x,y)=(0,0).

1

Posted by haifeng on 2024-05-14 23:38:23

由于

0|xysin1x2+y2||xy|x2+y22,

lim(x,y)(0,0)f(x,y)=lim(x,y)(0,0)xysin1x2+y2=0.

即函数 f(x,y)(0,0) 处连续.


(0,0) 处的偏导数:

fx(0,0)=limx0f(x,0)f(0,0)x0=limx0x0sin1x2+020x=0.

 

fy(0,0)=limy0f(0,y)f(0,0)y0=limy00ysin102+y20y=0.

f(x,y) 在原点的偏导数 fx(0,0), fy(0,0) 都存在, 且都是 0.