$\Omega$ 是由两个中心同在原点的同心上半球面以及一个顶点在原点的锥面围成. 显然使用球面坐标计算会更方便.
令
\[
\left\{
\begin{aligned}
x&=r\sin\varphi\cos\theta,\\
y&=r\sin\varphi\sin\theta,\\
z&=r\cos\varphi,
\end{aligned}
\right.
\]
其中 $\theta\in[0,2\pi]$, $\varphi\in[0,\frac{\pi}{3}]$, $r\in[1,2]$. 于是 $\Omega$ 的体积为
\[
\begin{split}
V&=\int_{0}^{2\pi}\mathrm{d}\theta\int_{0}^{\frac{\pi}{3}}\mathrm{d}\varphi\int_{1}^{2}r^2\sin\varphi\mathrm{d}r\\
&=2\pi\cdot\int_{0}^{\frac{\pi}{3}}\sin\varphi\mathrm{d}\varphi\cdot\int_{1}^{2}r^2\mathrm{d}r\\
&=2\pi\cdot(-\cos\varphi)\biggr|_{0}^{\frac{\pi}{3}}\cdot(\frac{1}{3}r^3)\biggr|_{1}^{2}\\
&=2\pi\cdot(1-\cos\frac{\pi}{3})\cdot\frac{7}{3}\\
&=\frac{7\pi}{3}.
\end{split}
\]
根据条件, $\Omega$ 的密度为 $\rho(x,y,z)=k(x^2+y^2)$. 因此在球面坐标系下
\[
\rho(x,y,z)=\rho(r\sin\varphi\cos\theta,r\sin\varphi\cos\theta,r\cos\varphi)=k\Bigl[(r\sin\varphi\cos\theta)^2+(r\sin\varphi\sin\theta)^2\Bigr]=kr^2\sin^2\varphi,
\]
故其质量为
\[
\begin{split}
M&=\int_{0}^{2\pi}\mathrm{d}\theta\int_{0}^{\frac{\pi}{3}}\mathrm{d}\varphi\int_{1}^{2}kr^2\sin^2\varphi\cdot r^2\sin\varphi\mathrm{d}r\\
&=2k\pi\cdot\int_{0}^{\frac{\pi}{3}}\sin^3\varphi\mathrm{d}\varphi\cdot\int_{1}^{2}r^4\mathrm{d}r
\end{split}
\]
其中
\[
\begin{split}
\int_{0}^{\frac{\pi}{3}}\sin^3\varphi\mathrm{d}\varphi&=-\int_{0}^{\frac{\pi}{3}}\sin^2\varphi\mathrm{d}\cos\varphi\\
&=-\int_{0}^{\frac{\pi}{3}}(1-\cos^2\varphi)\mathrm{d}\cos\varphi\\
&\stackrel{t=\cos\varphi}{=}-\int_{1}^{\frac{1}{2}}(1-t^2)\mathrm{d}t\\
&=\int_{\frac{1}{2}}^{1}(1-t^2)\mathrm{d}t\\
&=(t-\frac{1}{3}t^3)\biggr|_{\frac{1}{2}}^{1}\\
&=(1-\frac{1}{3})-(\frac{1}{2}-\frac{1}{3}\cdot\frac{1}{8})\\
&=\frac{5}{24}.
\end{split}
\]
\[
\int_{1}^{2}r^4\mathrm{d}r=(\frac{1}{5}r^5)\biggr|_{1}^{2}=\frac{31}{5}
\]
故 $\Omega$ 的质量为
\[
M=2k\pi\cdot\frac{5}{24}\cdot\frac{31}{5}=\frac{31k\pi}{12}.
\]