Posted by haifeng on 2023-10-23 17:15:21 last update 2023-11-02 16:49:49 | Answers (1) | 收藏
设 f,g 均为 3 阶可导函数, 求复合函数 f(g) 的各阶导数.
(f(g))′=f′(g)g′,[f(g)]″=[f′(g)g′]′=[f′(g)]′g′+f′(g)g″=f″(g)g′g′+f′(g)g″, 从而 [f(g)](3)=[f″(g)g′g′+f′(g)g″]′=f‴(g)(g′)3+f″(g)2g′g″+f″(g)g′g″+f′(g)g‴=f(3)(g)(g′)3+3f″(g)g′g″+f′(g)g(3).
经过计算
[f(g)](4)=f(4)(g)(g′)4+6f(3)(g′)2g″+3f″(g)(g″)2+4f″(g)g′g(3)+f′(g)g(4),
[f(g)](5)=f(5)(g)(g′)5+10f(4)(g)(g′)3g″+10f(3)(g)(g′)2g(3)+15f(3)(g)g′(g″)2+10f″(g)g″g(3)+5f″(g)g′g(4)+f′(g)g(5).