111. 设 $\varphi(n)=114$, 求 $n$.
Posted by haifeng on 2015-06-29 09:16:07 last update 2015-06-29 09:16:07 | Answers (0) | 收藏
设 $\varphi(n)=114$, 求 $n$.
设 $\pi(m)=114$, 求 $m$.
Posted by haifeng on 2015-06-29 09:16:07 last update 2015-06-29 09:16:07 | Answers (0) | 收藏
设 $\varphi(n)=114$, 求 $n$.
设 $\pi(m)=114$, 求 $m$.
Posted by haifeng on 2015-06-28 16:36:10 last update 2016-01-11 16:16:06 | Answers (0) | 收藏
对任意素数 $p\neq 2,5$, 存在 $n$, 使得 $10^n\equiv 1(\mod p)$.
更一般的,
对于与 $m$ 互素的任何数 $a$, 存在 $n$, 使得 $a^n\equiv 1(\mod m)$.
Hint: 即 Euler 定理, $n=\phi(m)$.
Posted by haifeng on 2015-06-02 09:35:26 last update 2015-06-02 09:35:26 | Answers (1) | 收藏
如果 $x, x+36, x+112$ 都是素数, 则 $2(x+112)+53=2x+277$ 一定是 3 的倍数.
Posted by haifeng on 2015-05-30 21:36:52 last update 2015-05-30 22:14:24 | Answers (0) | 收藏
证明:
\[
13\underbrace{88\cdots 8}_{6k}91\equiv 0(\mod 13),\quad\forall\ k=0,1,2,\ldots
\]
且
\[
13\underbrace{88\cdots 8}_{72k}91\equiv 0(\mod 169),
\]
即第一个能被169整除的是 1388888888888888888888888888888888888888888888888888888888888888888888888891, 其中含有72个8.
以上将所有8改成任何数字都一样. 这是因为 xxxxxx00 始终能被 13 整除.
1388888888888888888888888888888888888888888888888888888888888888888888888891 = 13 * 13 * 7696738667 * 6838252872218262661 * 156145294634054688436224492369146997125414197
一些计算(使用的是 ARIBAS 软件)
==> 1388888891 mod 13.
-: 0
==> 1388888891 mod 169.
-: 78
==> 1388888888888891 mod 13.
-: 0
==> 1388888888888891 mod 169.
-: 117
==> 1388888888888888888891 mod 13.
-: 0
==> 1388888888888888888891 mod 169.
-: 156
==> 1388888888888888888888888891 mod 13.
-: 0
==> 1388888888888888888888888891 mod 169.
-: 26
==> 1388888888888888888888888888888891 mod 13.
-: 0
==> 1388888888888888888888888888888891 mod 169.
-: 65
==> 1388888888888888888888888888888888888891 mod 13.
-: 0
==> 1388888888888888888888888888888888888891 mod 169.
-: 104
==> 1388888888888888888888888888888888888888888891 mod 13.
-: 0
==> 1388888888888888888888888888888888888888888891 mod 169.
-: 143
==> 1388888888888888888888888888888888888888888888888891 mod 13.
-: 0
==> 1388888888888888888888888888888888888888888888888891 mod 169.
-: 13
==> 1388888888888888888888888888888888888888888888888888888891 mod 13.
-: 0
==> 1388888888888888888888888888888888888888888888888888888891 mod 169.
-: 52
==> 1388888888888888888888888888888888888888888888888888888888888891 mod 13.
-: 0
==> 1388888888888888888888888888888888888888888888888888888888888891 mod 169.
-: 91
==> 1388888888888888888888888888888888888888888888888888888888888888888891 mod 13.
-: 0
==> 1388888888888888888888888888888888888888888888888888888888888888888891 mod 169.
-: 130
==> 1388888888888888888888888888888888888888888888888888888888888888888888888891 mod 13.
-: 0
==> 1388888888888888888888888888888888888888888888888888888888888888888888888891 mod 169.
-: 0
==>
Posted by haifeng on 2015-05-24 09:05:22 last update 2015-05-24 09:05:22 | Answers (0) | 收藏
形如 $10^k+157$ 的素数有
\[
10^{23}+157,\quad 10^{54}+157,\quad 10^{55}+157,
\]
Posted by haifeng on 2015-05-20 08:55:00 last update 2015-05-23 09:35:40 | Answers (1) | 收藏
\[\text{dgr}(N)=\text{dgr}((N\cdot k)\]
对任意满足 $\text{dgs}(k)=10$ 的 $k$ 都成立.
这里我们简写 $\text{dgs}=\text{digitSum}$, $\text{dgr}=\text{digitRoot}$.
$\text{digitSum}(N)$ 是指数 $N$ 在十进制表示下的各位数字之和. 而 $\text{digitRoot}(N)$ 是对 $N$ 不断求数字之和最后得到的一个一位数.
参见问题1542
Posted by haifeng on 2015-05-09 16:46:24 last update 2016-10-27 10:58:02 | Answers (1) | 收藏
设 $m,n$ 是两个正整数, 证明
\[
\begin{aligned}
\text{dgr}(m+n)&=\text{dgr}(\text{dgr}(m)+\text{dgr}(n)),\\
\text{dgr}(m\cdot n)&=\text{dgr}(\text{dgr}(m)\cdot\text{dgr}(n)),\\
\end{aligned}
\]
其中 $\text{dgr}(n)$ 是指数字 $n$ 的 digital root.
作为推论,
\[
\text{dgr}(n^k)=\text{dgr}\bigl(\text{dgr}^k(n)\bigr),\quad k\in\mathbb{Z}^{+}.
\]
Reference: http://en.wikipedia.org/wiki/Digital_root
The digital root of a sum is always equal to the digital root of the sum of the summands' digital roots
Posted by haifeng on 2015-05-09 14:28:32 last update 2015-05-09 14:28:32 | Answers (0) | 收藏
Posted by haifeng on 2015-04-25 15:16:26 last update 2015-04-25 15:16:26 | Answers (0) | 收藏
证明: $Ae+B\pi=C$ 不可能有整数解.
这里 $e$ 和 $\pi$ 是熟知的两个超越数, $A,B,C$ 是整数.
Posted by haifeng on 2014-11-27 11:18:56 last update 2014-11-27 11:18:56 | Answers (0) | 收藏
正整数的泽肯多夫表示
是指任意一个正整数都可以唯一地表示为一个或多个 Fibonacci 数的和, 如果是多个, 则这些 Fibonacci 数要求是不相邻的.
http://en.wikipedia.org/wiki/Zeckendorf%27s_theorem
http://www.encyclopediaofmath.org/index.php/Zeckendorf_representation