Questions in category: 流体力学 (Fluid Mechanics)
应用数学 >> 流体力学

1. 纳维-斯托克斯方程(Navier-Stokes 方程, N-S 方程)

Posted by haifeng on 2020-12-23 11:05:45 last update 2020-12-23 16:59:53 | Answers (0) | 收藏


\[
\rho\biggl(\frac{\partial V}{\partial t}+V\cdot\nabla V\biggr)=\nabla P+\rho g+\mu\nabla^2 V
\]

 

这里 $\rho=\rho(x,y,z,t)$ 指流体的密度. $P=P(x,y,z,t)$ 是内部压力.  $V=V(x,y,z,t)$ 是速度矢量.

$\dfrac{\partial V}{\partial t}$ 指速度矢量关于时间的变化.

$\nabla V=(\dfrac{\partial}{\partial x},\dfrac{\partial}{\partial y},\dfrac{\partial}{\partial z})V$ : 指 $V$ 的梯度.

$V\cdot\nabla V$ :  The speed and direction which the fluid is moving.

 

右侧三项之和是作用在流体上的所有力之和. 其中 

  • $\nabla P$ 即内部压力的梯度.
  • $\rho g$ 指作用在流体上的外力, 比如重力.
  • $\mu\nabla^2 V$ 是作用在流体上的内力(internal stress forces acting on the fluid (taking into consideration various effects))

 

 

Remark:

这里 $V(x,y,z,t)$ 是流体在空间中给定点 $(x,y,z)$ 及时刻 $t$ 的速度, 而非指流体中某特定粒子(分子或原子等)的速度. 

2. 连续性方程

Posted by haifeng on 2011-05-20 10:17:31 last update 0000-00-00 00:00:00 | Answers (0) | 收藏


The equation of continuity