Answer

问题及解答

$\sigma_n(x)=\frac{1}{2}+\cos x+\cos 2x+\cdots+\cos nx$

Posted by haifeng on 2015-08-24 15:00:44 last update 2015-08-24 15:00:44 | Edit | Answers (1)

设 $\sigma_n(x)=\frac{1}{2}+\cos x+\cos 2x+\cdots+\cos nx$, 证明

\[
\sigma_n(x)=\frac{\sin\frac{2n+1}{2}x}{2\sin\frac{1}{2}x},\quad\forall\ x\neq 2k\pi.
\]

而当 $x=2k\pi$ 时, $\sigma_n(x)=\frac{1}{2}+n$.

1

Posted by haifeng on 2015-08-24 15:33:30

对 $\sigma_n(x)=\frac{1}{2}+\cos x+\cos 2x+\cdots+\cos nx$ 两边同乘以 $2\sin\frac{1}{2}x$, 得

\[
\begin{split}
2\sin\frac{1}{2}x\cdot\sigma_n(x)&=\sin\frac{1}{2}x+2\sin\frac{1}{2}x\cos x+2\sin\frac{1}{2}x\cos 2x+2\sin\frac{1}{2}x\cos 3x+\cdots+2\sin\frac{1}{2}x\cos nx\\
&=\sin\frac{1}{2}x+\sum_{k=1}^{n}2\sin\frac{1}{2}x\cos kx,
\end{split}
\]

注意到

\[
2\sin\frac{1}{2}x\cos kx=\sin(k+\frac{1}{2})x-\sin(k-\frac{1}{2})x,
\]

将它代入上面, 得

\[
\begin{split}
2\sin\frac{1}{2}x\cdot\sigma_n(x)&=\sin\frac{1}{2}x+\sum_{k=1}^{n}\bigl[\sin(k+\frac{1}{2})x-\sin(k-\frac{1}{2})x\bigr]\\
&=\sin\frac{1}{2}x+(\sin\frac{3}{2}x-\sin\frac{1}{2}x)+(\sin\frac{5}{2}x-\sin\frac{3}{2}x)+\cdots+(\sin\frac{2n+1}{2}x-\sin\frac{2n-1}{2}x)\\
&=\sin\frac{2n+1}{2}x.
\end{split}
\]

因此

\[
\sigma_n(x)=\frac{\sin\frac{2n+1}{2}x}{2\sin\frac{1}{2}x},\quad\forall\ x\neq 2k\pi.
\]

当 $x=2k\pi$ 时,

\[
\sigma_n(x)=\frac{1}{2}+\cos(2k\pi)+\cos(2\cdot 2k\pi)+\cdots+\cos(n\cdot 2k\pi)=\frac{1}{2}+n.
\]