求极限 $\lim\limits_{x\rightarrow 0^+}(x^x -1)\ln x$.
求极限 $\lim\limits_{x\rightarrow 0^+}(x^x -1)\ln x$.
求极限 $\lim\limits_{x\rightarrow 0^+}(x^x -1)\ln x$.
1
注意到 $x^x -1=e^{x\ln x}-1$, 而
\[
\lim\limits_{x\rightarrow 0^+}x\ln x\stackrel{t=1/x}{=}\lim\limits_{t\rightarrow +\infty}\frac{1}{t}\ln\frac{1}{t}=-\lim\limits_{t\rightarrow +\infty}\frac{\ln t}{t}=0.
\]
因此 $e^{x\ln x}-1\sim x\ln x$, 当 $x\rightarrow 0^+$ 时. 于是
\[
\begin{split}
\lim_{x\rightarrow 0^+}(x^x -1)\ln x&=\lim_{x\rightarrow 0^+}(e^{x\ln x}-1)\ln x\\
&=\lim_{x\rightarrow 0^+}(x\ln x)\cdot\ln x\\
&=\lim_{x\rightarrow 0^+}x\ln^2 x\\
&\stackrel{x=1/t}{=}\lim_{t\rightarrow +\infty}\frac{\ln^{2}(\frac{1}{t})}{t}\\
&=\lim_{t\rightarrow+\infty}\frac{(\ln t)^2}{t}\\
&=\lim_{t\rightarrow+\infty}(\frac{\ln t}{\sqrt{t}})^2\\
&=\lim_{t\rightarrow+\infty}4\cdot (\frac{\ln\sqrt{t}}{\sqrt{t}})^2\\
&=0.
\end{split}
\]