Posted by haifeng on 2016-12-18 13:32:40 last update 2016-12-18 13:33:04 | Edit | Answers (1)
求极限 limx→0+(xx−1)lnx.
1
Posted by haifeng on 2016-12-18 13:44:57
注意到 xx−1=exlnx−1, 而
limx→0+xlnx=t=1/xlimt→+∞1tln1t=−limt→+∞lntt=0.
因此 exlnx−1∼xlnx, 当 x→0+ 时. 于是
limx→0+(xx−1)lnx=limx→0+(exlnx−1)lnx=limx→0+(xlnx)⋅lnx=limx→0+xln2x=x=1/tlimt→+∞ln2(1t)t=limt→+∞(lnt)2t=limt→+∞(lntt)2=limt→+∞4⋅(lntt)2=0.