Posted by haifeng on 2017-04-08 18:57:17 last update 2017-04-08 20:28:42 | Edit | Answers (1)
求
limn→∞1n2[n2−1+n2−4+⋯+n2−(n−1)2]
[Hint] 用积分
1
Posted by haifeng on 2017-04-08 19:04:37
原极限等于
limn→∞1n∑i=1n−11−(in)2
考虑函数 f(x)=1−x2, x∈[0,1], 它在 [0,1] 上可积. 因此, 将 [0,1] 作 n 等分, 得
limn→∞∑i=1n−11−(in)2⋅1n=∫011−x2dx=π4