Answer

问题及解答

求极限 $\lim\limits_{n\rightarrow\infty}\frac{1}{n^2}\biggl[\sqrt{n^2-1}+\sqrt{n^2-4}+\cdots+\sqrt{n^2-(n-1)^2}\biggr]$

Posted by haifeng on 2017-04-08 18:57:17 last update 2017-04-08 20:28:42 | Edit | Answers (1)

\[
\lim_{n\rightarrow\infty}\frac{1}{n^2}\biggl[\sqrt{n^2-1}+\sqrt{n^2-4}+\cdots+\sqrt{n^2-(n-1)^2}\biggr]
\]

 

[Hint] 用积分

1

Posted by haifeng on 2017-04-08 19:04:37

原极限等于

\[
\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{i=1}^{n-1}\sqrt{1-(\frac{i}{n})^2}
\]

考虑函数 $f(x)=\sqrt{1-x^2}$, $x\in[0,1]$, 它在 $[0,1]$ 上可积. 因此, 将 $[0,1]$ 作 $n$ 等分, 得

\[
\lim_{n\rightarrow\infty}\sum_{i=1}^{n-1}\sqrt{1-(\frac{i}{n})^2}\cdot\frac{1}{n}=\int_0^1 \sqrt{1-x^2}dx=\frac{\pi}{4}
\]