Answer

问题及解答

设 $\alpha,\beta\in(0,\frac{\pi}{2})$, 且 $\alpha\neq\beta$, 证明: $1 < \frac{\alpha\cos\beta-\beta\cos\alpha}{\alpha-\beta} < \frac{\pi}{2}$.

Posted by haifeng on 2022-11-10 14:29:26 last update 2022-11-10 14:29:26 | Edit | Answers (1)

设 $\alpha,\beta\in(0,\frac{\pi}{2})$, 且 $\alpha\neq\beta$, 证明:

\[1 < \frac{\alpha\cos\beta-\beta\cos\alpha}{\alpha-\beta} < \frac{\pi}{2}.\]

1

Posted by haifeng on 2022-11-10 14:36:43

不妨设 $\alpha < \beta$.

\[
\frac{\alpha\cos\beta-\beta\cos\alpha}{\alpha-\beta}=\frac{\frac{\cos\beta}{\beta}-\frac{\cos\alpha}{\alpha}}{\frac{1}{\beta}-\frac{1}{\alpha}}
\]

令 $f(x)=\frac{\cos x}{x}$, $g(x)=\frac{1}{x}$. 这两个函数在 $[\alpha,\beta]$ 上满足 Cauchy 中值定理的条件, 于是存在 $\xi\in(\alpha,\beta)$, 使得

\[
\frac{f'(\xi)}{g'(\xi)}=\frac{f(\beta)-f(\alpha)}{g(\beta)-g(\alpha)},
\]

由 $f'(x)=\frac{-x\sin x-\cos x}{x^2}$, $g(x)=-\frac{1}{x^2}$, 可得

\[
\frac{\frac{\cos\beta}{\beta}-\frac{\cos\alpha}{\alpha}}{\frac{1}{\beta}-\frac{1}{\alpha}}=\frac{\frac{-x\sin\xi-\cos\xi}{\xi^2}}{-\frac{1}{\xi^2}}=\xi\cdot\sin\xi+\cos\xi.
\]

只需证明下面的不等式

\[
1 < x\sin x+\cos x < \frac{\pi}{2}
\]

而这是容易的.