设 $D=\{(x,y)\in\mathbb{R}^2\mid 2\leqslant\frac{x^2}{x^5+y^2}\leqslant 5,\ 4\leqslant\frac{y}{x^5+y^2}\leqslant 7\}$, 求二重积分 $\displaystyle\iint_{D}\frac{1}{x^3 y}\mathrm{d}x\mathrm{d}y$.
设 $D=\{(x,y)\in\mathbb{R}^2\mid 2\leqslant\frac{x^2}{x^5+y^2}\leqslant 5,\ 4\leqslant\frac{y}{x^5+y^2}\leqslant 7\}$, 求二重积分 $\displaystyle\iint_{D}\frac{1}{x^3 y}\mathrm{d}x\mathrm{d}y$.