Posted by haifeng on 2024-05-18 22:40:16 last update 2024-05-18 22:40:16 | Edit | Answers (1)
设螺旋形弹簧一周的参数方程为
{x=acost,y=asint,z=kt,
这里 t∈[0,2π]. 不妨记此曲线为 Γ, 设其线密度函数为 ρ(x,y,z)=x2+y2+z2, 求:
(1) Γ 的质量; (2) Γ 关于 z 轴的转动惯量; (3) Γ 的质心.
1
Posted by haifeng on 2024-05-19 09:08:22
(1) 质量为
∫Γρ(x,y,z)ds=∫02π(x2+y2+z2)(x′(t))2+(y′(t))2+(z′(t))2dt=∫02π(a2cos2t+a2sin2t+k2t2)(−asint)2+(acost)2+k2dt=∫02π(a2+k2t2)a2+k2dt=a2+k2⋅(a2t+13k2t3)|02π=a2+k2⋅(2πa2+83k2π3)=2π3a2+k2(3a2+4π2k2).
(2) 对 z 轴的转动惯量为
∫Γ(x2+y2)ρ(x,y,z)ds=∫Γa2ρ(x,y,z)ds=a2a2+k2⋅(2πa2+83k2π3)=2πa23a2+k2(3a2+4π2k2).
(3)
x¯=∫Γxρ(x,y,z)ds∫Γρ(x,y,z)ds
其中
∫Γxρ(x,y,z)ds=∫02πacost⋅(a2+k2t2)a2+k2dt=a2+k2⋅[a3∫02πcostdt+ak2∫02πt2costdt]=a2+k2⋅[a3⋅sint|02π+ak2∫02πt2dsint]=a2+k2⋅[0+ak2⋅(t2sint|02π−∫02πsintdt2)]
−∫02π2tsintdt=2∫02πtdcost=2[tcost|02π−∫02πcostdt]=2[(2πcos2π−0)−0]=4π.
因此,
∫Γxρ(x,y,z)ds=a2+k2ak2⋅4π.
于是
x¯=∫Γxρ(x,y,z)ds∫Γρ(x,y,z)ds=a2+k2ak2⋅4π2π3a2+k2(3a2+4π2k2)=6ak23a2+4π2k2.
类似地,
y¯=∫Γyρ(x,y,z)ds∫Γρ(x,y,z)ds
∫Γyρ(x,y,z)ds=∫02πasint⋅(a2+k2t2)a2+k2dt=a2+k2⋅[a3∫02πsintdt+ak2∫02πt2sintdt]=a2+k2⋅[a3⋅(−cost)|02π−ak2∫02πt2dcost]=a2+k2⋅[0−ak2⋅(t2cost|02π−∫02πcostdt2)]
∫02π2tcostdt=2∫02πtdsint=2[tsint|02π−∫02πsintdt]=2[0+0]=0.
∫Γxρ(x,y,z)ds=−a2+k2ak2⋅4π2.
y¯=∫Γxρ(x,y,z)ds∫Γρ(x,y,z)ds=−a2+k2ak2⋅4π22π3a2+k2(3a2+4π2k2)=−6πak23a2+4π2k2.
z¯=∫Γzρ(x,y,z)ds∫Γρ(x,y,z)ds
∫Γzρ(x,y,z)ds=∫02πkt⋅(a2+k2t2)a2+k2dt=a2+k2⋅[a2k∫02πtdt+k3∫02πt3dt]=a2+k2⋅[a2k⋅(12t2)|02π+k3⋅(14t4)|02π]=a2+k2⋅[a2k2π2+k34π4]=a2+k2⋅2π2k(a2+2π2k2).
z¯=∫Γzρ(x,y,z)ds∫Γρ(x,y,z)ds=a2+k2⋅2π2k(a2+2π2k2)2π3a2+k2(3a2+4π2k2)=3πk(a2+2π2k2)3a2+4π2k2.