Questions in category: 级数 (Infinite Series)
分析 >> 数学分析 >> 级数
<[1] [2] [3] [4] [5] [6] >

51. Newton\'s formula

Posted by haifeng on 2011-06-21 18:11:36 last update 2011-06-21 18:11:36 | Answers (0) | 收藏


\[ 1+\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{9}+\frac{1}{11}-\frac{1}{13}-\frac{1}{15}+\cdots=\frac{\pi}{2\sqrt{2}} \]

52. Leibniz's formula (Madhava-Leibniz)

Posted by haifeng on 2011-06-21 18:07:54 last update 2020-01-17 07:35:41 | Answers (4) | 收藏


\[\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots\]

53. 设 $\underbrace{\ln\ln\cdots\ln}_{k}n=\underbrace{\ln(\ln(\ln\cdots(\ln}_{k} n)\cdots))>0$, 问 $n$ 与 $k$ 的关系.

Posted by haifeng on 2011-05-24 22:47:23 last update 0000-00-00 00:00:00 | Answers (0) | 收藏


\[ n>\underbrace{\exp(\exp(\cdots \exp}_{k-2}(e)\cdots)). \]

54. 证明: $\sum_{n=1}^{+\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$.

Posted by haifeng on 2011-05-04 22:20:52 last update 2013-06-22 08:22:06 | Answers (1) | 收藏


$\sum_{n=1}^{+\infty}\frac{1}{n^2}$ 作为 $p$-级数, 此时 $p=2$ 当然收敛. 或者根据Cauchy 准则也可以证明其收敛.

事实上 当 $n>1$ 时,

\[
\frac{1}{n^2}<\frac{1}{n(n-1)}=\frac{1}{n-1}-\frac{1}{n},
\]

于是

\[
0<\sum_{k=n+1}^{n+p}\frac{1}{k^2}<\sum_{k=n+1}^{n+p}\Bigl(\frac{1}{k-1}-\frac{1}{k}\Bigr)=\frac{1}{n}-\frac{1}{n+p}<\frac{1}{n}\rightarrow 0,\quad(n\rightarrow\infty)
\]

根据 Cauchy 准则, 原级数收敛. (事实上其和为 $\frac{\pi^2}{6}$)


具体证明参见 slide: $\zeta(2)$ 探讨

 


 

可以证明更一般的情形

\[
\sum_{n=1}^{+\infty}\frac{1}{(n+a)^2}=\lim_{b\rightarrow a}\int_0^1\frac{t^b-t^a}{b-a}\cdot\frac{-1}{1-t}dt
\]

从而令 $a=0$ 得所要证的结论.


另外, 有

\[\frac{\pi^2}{12}=\sum_{n=1}^{+\infty}(-1)^{n-1}\frac{1}{n^2}.\]

问题740.


References

梅加强, 数学分析, 高等教育出版社, 2011

<[1] [2] [3] [4] [5] [6] >