41. 设 , 且 , 讨论 与 的关系.
Posted by haifeng on 2017-03-14 08:52:58 last update 2017-03-14 09:56:48 | Answers (1) | 收藏
设
特别的, 如果
References:
Paulo Ney de Souza, Jorge-Nuno Silva, Berkeley Problems in Mathematics,Third Edition.
Posted by haifeng on 2017-03-14 08:52:58 last update 2017-03-14 09:56:48 | Answers (1) | 收藏
设
特别的, 如果
References:
Paulo Ney de Souza, Jorge-Nuno Silva, Berkeley Problems in Mathematics,Third Edition.
Posted by haifeng on 2017-03-14 08:38:32 last update 2022-04-20 10:42:51 | Answers (0) | 收藏
假设
Remark:
高维的 Wirtinger 不等式又称为球面上的 Poincaré 不等式.
References:
https://arxiv.org/abs/1407.6871
https://en.wikipedia.org/wiki/Wirtinger%27s_inequality_for_functions
Wirtinger's inequality is seen as the one-dimensional version of Friedrichs' inequality.
Posted by haifeng on 2017-03-13 18:02:41 last update 2017-03-14 10:40:03 | Answers (1) | 收藏
求
[相关的积分]
证明:
如果我们记
于是
References:
吉米多维奇, 《数学分析习题集题解》(五) 3872.
[分析]
设
其中积分
是一个椭圆积分, 可以参考问题998 .
Posted by haifeng on 2016-12-27 07:07:47 last update 2016-12-27 07:07:47 | Answers (1) | 收藏
设
Posted by haifeng on 2016-08-23 14:54:56 last update 2016-08-23 14:54:56 | Answers (1) | 收藏
计算定积分
Posted by haifeng on 2016-04-29 04:51:05 last update 2016-04-29 04:51:05 | Answers (1) | 收藏
Posted by haifeng on 2016-04-29 04:43:34 last update 2016-04-29 04:43:34 | Answers (1) | 收藏
Posted by haifeng on 2016-04-29 04:39:31 last update 2020-11-01 14:20:27 | Answers (1) | 收藏
一般的, 证明积分
除了这里利用递推关系求出, 还可以应用积分余项. 请参考梅加强著《数学分析》例5.7.1
Posted by haifeng on 2015-09-22 20:02:27 last update 2015-09-22 20:04:30 | Answers (0) | 收藏
验证
是否正确?
注意这个积分与 zeta 函数相关.
Posted by haifeng on 2015-08-24 15:00:44 last update 2015-08-24 15:00:44 | Answers (1) | 收藏
设
而当