Questions in category: 定积分 (Definite Integral)
分析 >> 数学分析 >> 定积分 [78]
<[1] [2] [3] [4] [5] [6] [7] [8] >

41. fC1[a,b], 且 f(a)=0, 讨论 ff(x) 的关系.

Posted by haifeng on 2017-03-14 08:52:58 last update 2017-03-14 09:56:48 | Answers (1) | 收藏


fC1[a,b], 且 f(a)=0, 证明

supx[a,b]|f(x)|baab(f(x))2dx.

 

特别的, 如果 a=0,b=1, 则有 supx[0,1]|f(x)|01(f(x))2dx. (见问题1863)


References:

Paulo Ney de Souza, Jorge-Nuno Silva, Berkeley Problems in Mathematics,Third Edition.

42. Wirtinger 不等式(Wirtinger's inequality)

Posted by haifeng on 2017-03-14 08:38:32 last update 2022-04-20 10:42:51 | Answers (0) | 收藏


假设 gC1[a,b], 且 g(a)=g(b)=0. 则有

abg2(t)dt(baπ)2ab|g(t)|2dt.

 


Remark:

高维的 Wirtinger 不等式又称为球面上的 Poincaré 不等式.

 

References:

https://arxiv.org/abs/1407.6871
https://en.wikipedia.org/wiki/Wirtinger%27s_inequality_for_functions

Wirtinger's inequality is seen as the one-dimensional version of Friedrichs' inequality.

43. 011x41+x2dx.

Posted by haifeng on 2017-03-13 18:02:41 last update 2017-03-14 10:40:03 | Answers (1) | 收藏


011x41+x2dx.

 


[相关的积分]

证明:

0111x4dx01x21x4dx=π4.

 

如果我们记 f(x)=11x4, g(x)=x21x4, 则

f(x)+g(x)=1+x21x4=1+x21x2,f(x)g(x)=1x21x4=1x21+x2,

于是 (f(x)+g(x))(f(x)g(x))=1, 因此原积分

011x41+x2dx=011x21+x2=01(f(x)g(x))dx=0111x4dx01x21x4dx

 

References:

吉米多维奇, 《数学分析习题集题解》(五) 3872.

 


[分析]

x2=sinθ, θ[0,π2], 则 x=sinθ, dx=12sinθcosθdθ.

原式=0π21sin2θ1+sinθcosθ2sinθdθ=0π2cos2θ2sinθ(1+sinθ)dθ=0π21sin2θ2sinθ(1+sinθ)dθ=0π21sinθ2sinθdθ=120π21sinθdθ120π2sinθdθ,

其中积分

0π2sinθdθ=t=sinθ201t21t4dt

是一个椭圆积分, 可以参考问题998 .

44. I(x)=π2πysin(xy)ysinydy, 求 01I(x)dx.

Posted by haifeng on 2016-12-27 07:07:47 last update 2016-12-27 07:07:47 | Answers (1) | 收藏


I(x)=π2πysin(xy)ysinydy, 求 01I(x)dx.

45. 计算定积分 01x2arcsinx1x2dx

Posted by haifeng on 2016-08-23 14:54:56 last update 2016-08-23 14:54:56 | Answers (1) | 收藏


计算定积分

01x2arcsinx1x2dx

46. 求定积分 121x(1+xn)dx.

Posted by haifeng on 2016-04-29 04:51:05 last update 2016-04-29 04:51:05 | Answers (1) | 收藏


121x(1+xn)dx

47. 求定积分 13(3x)(x1)dx.

Posted by haifeng on 2016-04-29 04:43:34 last update 2016-04-29 04:43:34 | Answers (1) | 收藏


13(3x)(x1)dx

48. 求定积分 01(1x2)8dx.

Posted by haifeng on 2016-04-29 04:39:31 last update 2020-11-01 14:20:27 | Answers (1) | 收藏


01(1x2)8dx

 

一般的, 证明积分

01(1x2)ndx=(2n)!!(2n+1)!!

除了这里利用递推关系求出, 还可以应用积分余项. 请参考梅加强著《数学分析》例5.7.1

49. 求积分 0+1x(ex1)dx

Posted by haifeng on 2015-09-22 20:02:27 last update 2015-09-22 20:04:30 | Answers (0) | 收藏


验证

0+1x(ex1)dx=+

是否正确?


注意这个积分与 zeta 函数相关.

 

50. σn(x)=12+cosx+cos2x++cosnx

Posted by haifeng on 2015-08-24 15:00:44 last update 2015-08-24 15:00:44 | Answers (1) | 收藏


σn(x)=12+cosx+cos2x++cosnx, 证明

σn(x)=sin2n+12x2sin12x, x2kπ.

而当 x=2kπ 时, σn(x)=12+n.

<[1] [2] [3] [4] [5] [6] [7] [8] >