1. 设 在 上可微, 对于 上的每一个 , , 且 , 试证在 内有且仅有一点 , 使得 .
Posted by haifeng on 2025-01-07 09:58:17 last update 2025-01-07 09:58:17 | Answers (1) | 收藏
设
Posted by haifeng on 2025-01-07 09:58:17 last update 2025-01-07 09:58:17 | Answers (1) | 收藏
设
Posted by haifeng on 2024-10-31 08:52:20 last update 2024-10-31 09:07:00 | Answers (1) | 收藏
设
其中函数
Posted by haifeng on 2023-11-08 19:15:49 last update 2023-11-08 19:15:49 | Answers (2) | 收藏
证明下列不等式:
Posted by haifeng on 2023-10-29 19:39:32 last update 2023-10-29 19:39:32 | Answers (1) | 收藏
Posted by haifeng on 2023-10-29 15:49:05 last update 2023-10-29 15:49:05 | Answers (1) | 收藏
证明多项式
Posted by haifeng on 2022-11-10 14:29:26 last update 2022-11-10 14:29:26 | Answers (1) | 收藏
设
Posted by haifeng on 2021-11-19 15:33:22 last update 2021-11-19 15:33:22 | Answers (2) | 收藏
证明: 存在点
Posted by haifeng on 2020-11-02 16:32:44 last update 2020-12-28 13:25:27 | Answers (4) | 收藏
P. 112 习题 3.1
5. 设实数
6. 利用中值定理证明下列不等式:
(1)
10. 设函数
与 10 类似的题目是:
(10'). 设函数
12. 证明: 若函数
Posted by haifeng on 2019-11-16 13:11:02 last update 2019-11-16 13:11:02 | Answers (1) | 收藏
设函数
Posted by haifeng on 2019-11-11 21:39:48 last update 2019-11-11 22:05:21 | Answers (1) | 收藏
设函数
[分析]
此种类型的题目, 一般先将
然后转换为