Questions in category: 极限 (Limit)
分析 >> 数学分析 >> 极限 [109]
<[2] [3] [4] [5] [6] [7] [8] [9] [10] [11] >

81. 证明下面的极限

Posted by haifeng on 2016-08-18 21:48:41 last update 2016-08-18 22:56:15 | Answers (2) | 收藏


证明

\[
\lim_{n\rightarrow+\infty}\int_0^1\cdots\int_0^1\frac{n}{x_1+x_2+\cdots+x_n}dx_1 dx_2\cdots dx_n=2.
\]

 


 

[分析]

$n=1$ 时, 

\[
\int_0^1 \frac{1}{x_1}dx_1=\ln x\biggr|_{0}^{1}=+\infty.
\]

$n=2$ 时,

\[
\begin{split}
\int_0^1\int_0^1\frac{2}{x_1+x_2}dx_1 dx_2&=\int_0^1 \int_0^1\frac{2}{t+x}dt dx\\
&=\int_0^1\biggl[2\ln(t+x)\biggr|_{t=0}^{t=1}\biggr]dx\\
&=2\int_0^1[\ln(1+x)-\ln x]dx\\
&=2\int_0^1\ln(1+\frac{1}{x})dx\\
&=2\biggl[x\ln(1+\frac{1}{x})\biggr|_0^1-\int_0^1 xd\ln(1+\frac{1}{x})\biggr]\\
&=2\biggl[\ln 2-\int_0^1 x\cdot\frac{1}{1+\frac{1}{x}}\cdot\frac{-1}{x^2}dx\biggr]\\
&=2\biggl[\ln 2+\int_0^1\frac{1}{x+1}dx\biggr]\\
&=4\ln 2.
\end{split}
\]

82. 设 $x$ 为实数, 且 $|x|<1$. 问极限 $\lim_{n\rightarrow\infty}(1+x)(1+x^2)(1+x^4)(1+x^6)\cdots(1+x^{2n})$ 是否存在.

Posted by haifeng on 2016-04-08 22:05:45 last update 2016-04-08 22:05:45 | Answers (0) | 收藏


设 $x$ 为实数, 且 $|x|<1$. 问下面的极限是否存在

\[
\lim_{n\rightarrow\infty}(1+x)(1+x^2)(1+x^4)(1+x^6)\cdots(1+x^{2n})
\]

如果存在, 等于多少?

83. 求极限 $\lim_{n\rightarrow\infty}n(\frac{1}{n}+\frac{1}{n+1}+\cdots+\frac{1}{2n}-\ln 2)$

Posted by haifeng on 2016-03-27 02:01:34 last update 2016-03-27 02:01:34 | Answers (1) | 收藏


求极限

\[\lim_{n\rightarrow\infty}n(\frac{1}{n}+\frac{1}{n+1}+\cdots+\frac{1}{2n}-\ln 2)\]

 


[hint]

利用 Stolz 公式

84. 设 $x_n > 0$, $\lim_{n\rightarrow\infty}(x_{n+1}-x_n)=x>0$. $\lim_{n\rightarrow\infty}\frac{y_n}{x_n}=a > 0$. 求 $\lim_{n\rightarrow\infty}\biggl(\frac{x_1+x_2+\cdots+x_n}{x_n}\biggr)^{y_n}$.

Posted by haifeng on 2016-02-24 21:48:34 last update 2016-02-24 21:48:34 | Answers (1) | 收藏


设 $x_n > 0$, $\lim_{n\rightarrow\infty}(x_{n+1}-x_n)=x>0$. $\lim_{n\rightarrow\infty}\frac{y_n}{x_n}=a > 0$. 求

\[
\lim_{n\rightarrow\infty}\biggl(\frac{x_1+x_2+\cdots+x_n}{x_n}\biggr)^{y_n}.
\]

 

85. 求极限

Posted by haifeng on 2015-09-22 09:01:07 last update 2015-09-22 09:01:07 | Answers (1) | 收藏


求下面的极限

\[
\lim_{t\rightarrow+\infty}\frac{t^n}{e^t-1},\quad\lim_{t\rightarrow 0}\frac{t^n}{e^t-1}.
\]

86. $\lim\limits_{x\rightarrow 0}\frac{\int_0^x\arctan(x-t)dt}{\sin(3x)\ln(1+2x)}$

Posted by haifeng on 2015-03-09 09:21:55 last update 2021-01-06 19:39:43 | Answers (1) | 收藏


求极限

\[
\lim_{x\rightarrow 0}\dfrac{\int_0^x\arctan(x-t)dt}{\sin(3x)\ln(1+2x)}
\]

87. $\lim_{n\rightarrow\infty}\prod_{i=1}^{n+1}\cos\frac{\sqrt{2i-1}}{n}a^2=e^{-\frac{a^4}{2}}$

Posted by haifeng on 2015-03-03 09:49:36 last update 2015-03-03 10:05:05 | Answers (1) | 收藏


证明:

\[
\lim_{n\rightarrow\infty}\prod_{i=1}^{n+1}\cos\frac{\sqrt{2i-1}}{n}a^2=e^{-\frac{a^4}{2}}.
\]


Remark. 如果取对数, 则等价于

\[
\lim_{n\rightarrow\infty}\sum_{i=1}^{n+1}\ln\cos\frac{\sqrt{2i-1}}{n}a^2=-\frac{a^4}{2}.
\]

88. 求极限

Posted by haifeng on 2015-02-05 13:43:22 last update 2015-02-05 13:43:22 | Answers (1) | 收藏


求极限

\[
\lim_{x\rightarrow 0}\frac{6e^{-x^2}\sin x-x(6-7x^2)}{3\ln\frac{1+x}{1-x}-2x(3+x^2)}
\]

89. 证明下面的极限

Posted by haifeng on 2015-02-02 21:12:27 last update 2015-02-02 21:18:01 | Answers (1) | 收藏


设 $a_{k}=\underbrace{111\cdots 1}$, 其中 1 的个数是 $k$ 个. 证明

\[
\lim_{n\rightarrow\infty}\frac{n\times a_{n-1}}{a_n}=+\infty.
\]

 

90. 证明 $\sqrt{x+1}-\sqrt{x}=\frac{1}{2\sqrt{x+\theta(x)}}$

Posted by haifeng on 2015-01-11 19:36:08 last update 2015-01-11 19:36:08 | Answers (2) | 收藏


设 $x\geqslant 0$, 证明

\[
\sqrt{x+1}-\sqrt{x}=\frac{1}{2\sqrt{x+\theta(x)}},
\]

其中 $\theta(x)$ 满足不等式 $\frac{1}{4}\leqslant\theta(x) < \frac{1}{2}$.

<[2] [3] [4] [5] [6] [7] [8] [9] [10] [11] >